Pryč s kolonami, rychlejší průjezd i méně nehod
Zatímco dříve byla vrcholem chytrého řízení dopravy ve městech „zelená vlna“ na semaforech, umožňují dnešní technologie propojit městské kamery, senzory, mobilní data i samotná auta.
Vytváří obraz vzorku pomocí proudu elektronů, které mají kratsší vlnovou délku než viditelné světlo. Může proto studovat i objekty tak malé, že na ně optický mikroskop „nestačí“. Vlnová délka elektronů závisí na urcyhlovacím napětí mikroskopu.
U komerčně vyráběných mikroskopů se používá urychlovacího napětí od 100 do 400 kV, vlnová délka elektronů je pak 3,7.10-3 nm pro 100 kV a 1,6.10-3 nm pro 400 kV, zatímco vlnová délka viditelného světla je 400-750 nm. Rozdíl je tedy až 5 řádů! Rozlišovací schopnost současných špičkových přístrojů je 0,12 až 0,17 nm. Při tomto rozlišení je možné pozorovat jednotlivé atomové sloupce, neboť průměr atomu je asi 10-1 nm.
Elektrony projdou studovaným vzorkem, nebo se ve vzorku rozptylují a na fluorescenčním stínítku tvoří obraz. Vše probíhá ve vakuu, které zajistí střední volnou dráhu elektronu alespoň v délce 3 m. Elektronový mikroskop vynalezl v roce 1931 Ernst Ruska a obdržel za něj Nobelovu cenu za fyziku pro rok 1986.
Elektronové mikroskopy se dělí na dva druhy: Transmisní elektronový mikroskop - zdrojem proudu elektronů je kovová katoda, která po rozžhavení vysílá elektrony urychlované elektrickým polem. Proud elektronů prochází elektronovou čočkou, kterou tvoří elektrické pole zvláštního kondenzátoru, nebo magnetické pole cívky. Elektronová čočka soustřeďuje elektrony na pozorovaný preparát, který musí být velmi tenký, přibližně 1ÎĽmm, aby nepohlcoval elektrony. Proud elektronů pak prochází další elektronovou čočkou - objektivem a vytvoří první elektronový obraz. ÄŚást tohoto obrazu se elektronovou čočkou - projektivem - znovu zvětší a výsledný obrazec se promítá buď na stínítko pokryté vrstvou luminoforu, nebo se zachytí na fotografické desce či filmu.
Rastrovací elektronový mikroskop pracuje tak, že tenký svazek elektronů postupně “ohmatává” vzorek. Odražený paprsek se převádí na viditelný obraz. Mechanická clona vybírá pouze část elektronů, které dopadnou na preparát. Projekční čočka způsobí, aby na preparát dopadl zaostřený svazek elektronů. Svazek musí po povrchu preparátu rastrovat synchronně s TV. Vzorek může být 2-3 cm tlustý a až 15 cm dlouhý a musí být kvalitně pokoven tenkou vrstvou kovu.
Rozlišujeme čtyři skupiny elektronů opouštějící povrch vzorku: zpětně odražené elektrony poskytují informaci o morfologii povrchu vzorku a o materiálovém složení. Jejich rozlišovací schopnost je 50-200 nm, sekundární elektrony poskytují informaci převážně topografickou. Rozlišovací schopnost je 5-15 nm, augerovy elektrony - změřením jejich energie lze provádět prvkovou (kvalitativní) analýzu, primární elektrony se detekují jako u transmisního elektronového mikroskopu, rozlišovací schopnost 0,5 nm.
Můžeme detekovat i RTG záření nebo i viditelné světlo, což nám umožní získat další informace o zkoumaném vzorku.
Zatímco dříve byla vrcholem chytrého řízení dopravy ve městech „zelená vlna“ na semaforech, umožňují dnešní technologie propojit městské kamery, senzory, mobilní data i samotná auta.
Polovinu obyvatel hlavního města hřeje už 30 let teplo vyrobené v místě u soutoku Labe s Vltavou. Provoz napaječe Mělník – Praha byl zahájen v roce 1995. Do roku 2030 projde celá lokalita Mělník zásadní proměnou.
Přesně 168 speciálních čidel instalovali technici ÚJV Řež na kontejnmenty (ochranné budovy kolem reaktorů) v Jaderné elektrárně Temelín.
Co uděláme, když se projeví nejhorší dopady klimatických změn? Způsobí klimatické změny masovou lidskou migraci? Autorka Susannah Fisher, která vede mezinárodní výzkumný ...
International Atomic Energy Agency (Mezinárodní agentura pro atomovou energii) byla založena v roce 1957, aby dohlížela a stanovovala pravidla pro mírové využívání jaderné energie.
Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.