Jaderná fyzika a energetika

Článků v rubrice: 618

Klíčové budovy v Temelíně monitoruje nový systém

Přesně 168 speciálních čidel instalovali technici ÚJV Řež na kontejnmenty (ochranné budovy kolem reaktorů) v Jaderné elektrárně Temelín. Energetici tak mohou online sledovat stav budov, které tvoří klíčovou ochrannou bariéru mezi reaktory a životním prostředím. Úprava je součástí programu obnovy zařízení a přípravy temelínské elektrárny na více než šedesátiletý provoz. Modernizace vyšla ČEZ na desítky miliónů korun.

IAEA a její World Fusion Energy Group

International Atomic Energy Agency (Mezinárodní agentura pro atomovou energii) byla založena v roce 1957, aby dohlížela a stanovovala pravidla pro mírové využívání jaderné energie. Je rovněž orgánem zodpovědným za kontrolu dodržování Smlouvy o nešíření jaderných zbraní. Do roku 2024 se ve svých stanovách o energii fúzní v podstatě nezmiňovala. Ovšem abychom IAEA nekřivdili – nelze zapomenout na každoroční IAEA Fusion Energy Conference. Letos už třicátá! Žádná mezinárodní organizace speciálně pro fúzní energii (jako obdoba IAEA) do loňského roku neexistovala. Určitě částečně proto, že IAEA ji často suplovala. Je to už 72 roků po odpálení první H-bomby, ale fúzní elektrárnu dosud nemáme! Fúzní energie je historicky v jiné situaci a s jinými problémy, než její starší sestřička, jaderná energie štěpná. Problémy, se kterými se nyní fúzní energie potýká, jsou jiné než u „standardní“ energie atomové štěpné, i když obě mají řadu záležitostí společných. Míting World Fusion Energy Groupe se konal současně s 30. IAEA Fusion Energy Conference 13. – 18. 10. 2025, tentokrát v čínském Chengdu.

 

Česká energie pro nejmrazivější kouty vesmíru

Sondy zkoumající Sluneční systém potřebují energii. V temnotách měsíčních jeskyní, na prašném povrchu Marsu, v mrazivých hlubinách kosmu, na ledové krustě Saturnových měsíců, všude tam, kam sluneční světlo pořádně nedosáhne, se nemohou spolehnout na solární panely. Energii jim může dodat radioaktivní rozpad prvků. Česká firma Stellar Nuclear se bude zabývat vývojem radioizotopových energetických systémů, které budou dodávat energii celé řadě kosmických misí. Navíc při tom nebude využívat problematické plutonium, ale radioizotopy z vysloužilých lékařských a průmyslových zářičů.

Použité palivo z jaderných elektráren může vyrábět palivo pro elektrárny fúzní

Použité jaderné palivo (nesprávně někdy označované za jaderný odpad) by se mohlo využít k výrobě vzácného izotopu nezbytného pro jadernou fúzi. Tritium, radioaktivní izotop vodíku, není na Zemi přirozeně snadno dostupné, jeho výroba je drahá a lze ho vyrobit jen v omezeném množství. Na podzimním setkání Americké chemické společnosti (ACS) Terence Tarnowsky, fyzik z Národní laboratoře v Los Alamos, navrhl, že tritium by se mohlo získávat při zpracovávání produktů jaderného štěpení ze současných jaderných reaktorů. Fyzik říká, že jeho návrh na využití jaderného „odpadu“ jako paliva pro jadernou fúzi by mohl pomoci USA stát se lídrem v ekonomice fúze. Potřebná technologie je k dispozici už dnes.

Jak se daří stelarátorům v éře startupů?

Může rostoucí vlna technologie stelarátorů pozvednout celý fúzní průmysl? Začátek milénia zastihl vývoj fúze ve znamení rození privátních společností. Kapitalista zavětřil a… ITER se mu jevil jako dobrá investice, ovšem na jeho vkus pomalá. Přece musí existovat něco svižnějšího než tokamak, nebo dokonce neohrabaný stelarátor. Po dvaceti letech privát zjistil, že koncept Sacharova či Spitzera má cosi do sebe, zejména když tokamaky už mají řadu slušných výsledků. Dokonce i otloukánek stelarátor s podivně zkroucenou vakuovou komorou, ale možností stacionárního režimu, v poslední době díky Wendelsteinu 7-X z Max Planck Institut of Plasma Physic v Garchingu ukázal, že se stelarátory je přece dobré počítat: výkonné počítače, AI, supravodiče a překvapivá vlna startupů jsou dnes v každém případě nezanedbatelnými pomocníky.

ITER se připravuje na wolframovou stěnu

Za materiál, který bude pokrývat vnitřní stěny vakuové komory tokamaku ITER, bylo standardně považováno beryllium, s výjimkou tepelně nejvíce namáhaného údolí komory – divertoru, kde beryllium bude nahrazeno wolframem. Wolfram je mimořádně tepelně odolný, ale je také relativně bohatým zdrojem nečistot, a proto měl být divertor ošetřen výkonnými vývěvami. Dnes vidíme vše jinak. Vakuová komora bude na celém povrchu ošetřená tak zvanou boronizací.

... 1 2 3 4 5 6 » 103 ...

Nejnovější články

Snazší léčení mozkového nádoru změnou diety

Nová laboratorní studie využila unikátní aspekt metabolismu buněk glioblastomu ke zvýšení účinnosti chemoterapie a radiace a obrátila vlastnosti rakoviny proti ní samé.

Společně můžeme pokračovat mnohem rychleji, říkají fúzaři

Mé poslední dny strávené v akademickém ústavu se už počítaly na prstech jedné ruky. Nicméně se mi podařilo vydat knížku Soukromý kapitál ve výzkumu termojaderné fúze.

Kultivované maso: Co to je a jak vzniká

Kultivované maso je maso vypěstované přímo z živočišných buněk, bez nutnosti porážky zvířat. V dnešní době už nejde o sci-fi.

Hackathon v Brně – jaké inovace vymysleli středoškoláci za 24 hodin?

Mladé technické mozky ze středních škol z Česka a Slovenska se na konci listopadu utkaly v 8. ročníku AT&T HACKATHONu Junior v Brně. Dvoudenní maraton plný technologií opanovali ...

Záhadná světla na Měsíci

V noci 19. dubna 1787 astronom William Herschel zaznamenal z neosvětleného nového měsíce hodinu trvající světlo, jasné jako mlhovina v Orionu. Co to viděl? Pravděpodobně byl svědkem „přechodového ...

Nejnovější video

Stellarátory - budoucnost energetiky?

Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.

close
detail