Ochrana technických zařízení a dat během výpadků elektřiny
Rozsáhlé výpadky elektřiny, které počátkem května 2025 zasáhly Pyrenejský poloostrov, poukázaly na zranitelnost naší energetické infrastruktury a zdůraznily potřebu ochránit ...
Větrné elektrárny vyrábějí elektrickou energii přeměnou z energie proudícího vzduchu. Stavba těchto typů elektráren má smysl jen tam, kde vane vítr často a má dostatečnou rychlost. Tento návod na výrobu pokusného modelu nás zavede do světa meteorologie. Rychlost větru totiž potřebujeme znát nejen při hledání místa pro větrnou elektrárnu, ale i při předpovídání počasí.
Při měření rychlosti větru zvedneme rukojeť s větrným křížem nad hlavu a podle rychlosti jeho otáčení usuzujeme na rychlost větru.
Při měření namíříme přístroj proti větru tak, aby se vítr do zavěšené destičky opíral plnou silou. Čím silnější je vítr, tím větší je výchylka destičky ze svislého směru. Velikost výchylky odečteme na stupnici, kterou můžeme zkusmo ocejchovat přímo v m/s nebo v km/h podle níže uvedené tabulky.
Meteorologové používají anemometr, pracující na stejném principu jako náš model.
Na kříži jsou tři nebo čtyři lehké hliníkové misky. Jejich otáčení se přenáší na malý generátorek nebo elektronický čítač otáček. Naměřené údaje o rychlosti a směru větru se zaznamenávají a zpracovávají počítačem. Rychlost větru se udává buď v metrech za sekundu (případně v km/h), nebo ji charakterizuje tzv. Beaufortova stupnice.
Zdroj: RNDr. Jaroslav Kusala, Hrátky s obnovitelnými zdroji, součást vzdělávacího programu ČEZ, a. s., Svět energie. Publikaci můžete získat na:
http://www.cez.cz/cs/vyzkum-a-vzdelavani/pro-studenty/materialy-ke-studiu/tiskoviny.html
Nabídku vzdělávacího programu najdete na: http://www.cez.cz/vzdelavaciprogram
>Stupeň | >Rychlost (m/s) | >Rychlost (km/h) | >Označení | účinky |
---|---|---|---|---|
0 | < 0,2 | < 1 | bezvětří | kouř vystupuje přímo vzhůru |
1 | 0,3–1,4 | 1–5 | vánek | sotva pozorovatelný pohyb vzduchu |
2 | 1,7–3 | 1 6–11 | slabý vítr | pohybuje lehkým praporkem |
3 | 3,3–5,3 | 12–19 | mírný vítr | pohybuje praporem a listím, čeří hladinu stojaté vody |
4 | 5,6–7,8 | 20–28 | dosti čerstvý vítr | pohybuje slabšími větvemi stromů |
5 | 8,1–10,8 | 29–39 | čerstvý vítr | pohybuje silnějšími větvemi, na stojaté vodě vznikají vlny |
6 | 11,1–13,6 | 40–49 | silný vítr | pohybuje slabšími stromy |
7 | 13,9–16,9 | 50–61 | prudký vítr | pohybuje stromy střední tloušťky, vlny na stojaté vodě mají zpěněné vrcholy |
8 | 17,2–20,6 | 62–74 | bouřlivý vítr | pohybuje silnějšími stromy a ulamuje slabší větve, ztěžuje chůzi proti větru |
9 | 20,8–24,4 | 75–88 | vichřice | působí menši škody na stavbách |
10 | 24,7–28,3 | 89–102 | silná vichřice | vyvrací stromy |
11 | 28,6–32,5 | 103–117 | mohutná vichřice | rozsáhlé škody na lesních porostech a budovách |
12 | přes 32,5 | > 117 | orkán | ničivé účinky, strhává střechy, shazuje komíny |
Rozsáhlé výpadky elektřiny, které počátkem května 2025 zasáhly Pyrenejský poloostrov, poukázaly na zranitelnost naší energetické infrastruktury a zdůraznily potřebu ochránit ...
V temelínské jaderné elektrárně zkoušejí energetici využití autonomních dronů pro inspekce technologií v obtížně přístupných prostorách.
Pietro Barabashi, generální ředitel mezinárodního projektu ITER, který ve Francii buduje fúzní reaktor, vypráví o nekonečně náročném procesu výstavby.
Skupina ČEZ otevřela v Málkově u Chomutova moderní dispečerské centrum pro řízení obnovitelných zdrojů energie. Počítá se s tím, že do portfolia výroben ovládaných ...
„Bez energetické bezpečnosti není žádná bezpečnost,“ takto shrnuje Dr. William Gillett, ředitel energetického programu EASAC, zprávu Zabezpečení udržitelných energetických zásob.
Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.