Mikrobiální zátěž může ovlivnit naše nemoci
Vědci vyvinuli nový model strojového učení pro predikci mikrobiální zátěže — hustoty mikroorganismů v našich střevech — a použili ho k prokázání, jak důležitou roli hraje ...
Elektrochemický článek, který přeměňuje plynný oxid uhličitý na cenné sloučeniny metan nebo oxid uhelnatý, bude moci využít vysokoteplotní technologie, včetně zdokonalených reaktorů IV. generace. Vyvíjejí jej vědci v Idaho National Laboratory ministerestva energetiky USA.
Protonický keramický elektrochemický článek byl vyvinutý v rámci projektu financovaného z programu INL Laboratory Directed Research and Development. Umožňuje chemickou reakci, která přeměňuje zachycený oxid uhličitý na oxid uhelnatý nebo s vodou na metan, sloučeniny, které jsou důležitými výchozími surovinami mnoha průmyslových procesů nebo produktů.
Elektrochemický článek používá keramický materiál, který snadno vede protony (jádra atomů vodíku), které poskytuje jednoduchá molekula vody. Tyto protony se pak spojují s oxidem uhličitým v elektrochemické reakci za vzniku oxidu uhelnatého nebo metanu. Tým INL, vedený Senior Scientistem Dong Dingem, ukázal, že povrch keramického materiálu lze jemně vyladit tak, aby selektivně produkoval oxidu uhelnatý nebo metan.
„Článek je jednou z nejslibnějších technologií, které mohou přeměnit plynný CO2 na užitečné meziprodukty“, řekl Ding. „Je velmi těžké rozbít vazby uhlík-kyslík. S tímto elektrochemickým článkem můžeme využít teplo a elektřinu pocházející z obnovitelných zdrojů nebo jaderné energie k rozbití vazby uhlík-kyslík v CO2."
Zařízení by se umísťovalo ke zdroji uhlíkových emisí. Vyžadovalo by teplo a elektřinu k napájení procesu, mohlo by využívat výhod vysokoteplotních technologií, jako jsou integrované energetické systémy, které zahrnují další generaci pokročilých jaderných reaktorů. Takové reaktory by mohly být umístěny společně s průmyslovými závody, které produkují biopaliva, bioenergii nebo bioprodukty. Vysokoteplotní pára a elektřina z reaktoru by pak mohly být použity k recyklaci oxidu uhličitého z bioenergetické elektrárny.
Buňka je zatím velká jako hodinky, ale výzkumní pracovníci z Argonne National Laboratory, Sandia National Laboratories a Pacific Northwest National Laboratory spolupracují s Dingovým týmem na rozšíření procesu a plánují použít zdokonalenou výrobní technologii k získání větších elektrochemických buněk, které budou zařazeny do integrovaného energetického demonstračního projektu v Energy Systems Laboratory v Idaho Falls, která je součástí INL.
Zdroj: World Nuclear News, 17.5.2021. Electrochemical cell leverages next-generation nuclear heat.
Vědci vyvinuli nový model strojového učení pro predikci mikrobiální zátěže — hustoty mikroorganismů v našich střevech — a použili ho k prokázání, jak důležitou roli hraje ...
Mohl by mozek někdy existovat samostatně, odděleně od těla nebo nezávisle na něm? Filozofové se dlouho zamýšleli nad takovými scénáři „mozku v nádobě“ a ptali se, zda by izolovaný ...
Už vám počítač nebo tablet hlásil „Not enough memory to complete this operation“? Můžete spotřebovat veškeré úložiště v telefonu, zaplnit disk počítače.
Mezinárodní síť observatoří gravitačních vln LIGO, Virgo a KAGRA (LVK) oznámila v dubnu detekci svého 200. kandidátského signálu gravitační vlny v tomto čtvrtém pozorovacím ...
QR kódy se staly každodenním nástrojem pro rychlý přístup k webovým stránkám nebo digitálním menu restaurací, k provádění online plateb či využívání ...
Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.