Jaderná fyzika a energetika

Článků v rubrice: 403

Další etapa hledání hlubinného úložiště splněna

ÚJV Řež letos v červnu úspěšně dokončila šestiletý projekt pro podporu hodnocení bezpečnosti hlubinného úložiště použitého jaderného paliva v ČR. Prostřednictvím své divize Radioaktivní odpady a vyřazování vedla projekt jako hlavní dodavatel pro Správu úložišť radioaktivních odpadů (SÚRAO), která je v ČR na základě zákona zodpovědná za hospodaření s radioaktivními odpady. Řešení zahrnovalo celkem 44 dílčích podprojektů a publikování téměř 240 odborných zpráv. Mezi nejdůležitější výsledky komplexních prací patří pilotní výpočet hodnotící dlouhodobou bezpečnost hlubinného úložiště (HÚ) použitého jaderného paliva a radioaktivních odpadů, s reálnými daty z předpokládané hloubky HÚ a příprava podkladů pro proces hodnocení všech potenciálních lokalit z hlediska dlouhodobé bezpečnosti úložiště. Celý proces byl uzavřen doporučením 4 lokalit pro další detailní průzkumné práce.

Průkopnický tokamak TFTR

Americká jaderná společnost (ANS, The American Nuclear Society), přední americká organizace na podporu jaderné vědy, propůjčila čestný titul „Historický mezník ve výzkumu jádra“ (Nuclear Historic Landmark) průkopnickému Tokamak Fusion Test Reactor, který fungoval v letech 1982 až 1997 v laboratoři Princeton Plasma Physics Laboratory (PPPL) Amerického ministerstva energetiky (DOE). (Dnes už je TFTR rozmontován, tj. odvezen do sběrných surovin.) Průkopnické zařízení položilo základ budoucím fúzním reaktorům a v roce 1994 vytvořilo světový rekord v generaci fúzního výkonu (10,7 milionů wattů). V letech 1993 až 1997 to byl ještě další rekord - v celkové uvolněné energii z fúze (1 500 milionů joulů). Úspěchy znamenaly významný krok k uskutečnění fúze na Zemi – uvolnění energie, která pohání slunce a hvězdy - jako bezpečného, čistého a bohatého zdroje energie pro výrobu elektřiny. (O tři roky později rekordy TFTR překonal evropský tokamak JET výkonem 16,5 MW a uvolněnou energií 22 MJ.)

Stavba druhého štěpného reaktoru na Fakultě jaderné a fyzikálně inženýrské ČVUT má zelenou

Na začátku listopadu vydal Státní úřad pro jadernou bezpečnost (SÚJB) Fakultě jaderné a fyzikálně inženýrské ČVUT v Praze (FJFI) povolení k umístění podkritického reaktoru VR-2. Příprava pokračuje podle harmonogramu, a nový reaktor by měl být spuštěn v roce 2022.

Lana předpínající temelínský kontejnment

Jakoby se naráz zvedalo tisíc osobních automobilů. Takovou sílu je potřeba vyvinout při napětí lan, která vyztužují ochranou budovu kolem reaktoru - kontejnment. Letos prošla důležitou kontrolou, která se provádí jednou za šest let, ochranná budova druhého bloku Temelína.

Rajčata odolná vůči vedru

Tváří v tvář globálnímu oteplování se Mauricius, ostrov v Indickém oceánu, obrátil o pomoc k jaderné technologii, aby pomohla vyvinout nové odrůdy rajčat. Mezinárodní agentura pro atomovou energii (IAEA) ve spolupráci s Organizací OSN pro výživu a zemědělství (FAO) pomáhala mauricijskému národnímu Institutu pro výzkum potravin a zemědělství (FAREI) při vývoji nových odrůd rajčat pomocí ozařování. Nová vysoce výnosná a teplu odolná semena rajčat jsou nyní na světě a distribuují se zemědělcům. Pomoc ochraně národního hospodářství má hodnotu 14 milionů USD.

Rusko staví další závod na zpracování ochuzeného uranu

Ochuzený uran je produktem z výroby jaderného paliva. Palivo pro většinu současných štěpných jaderných reaktorů se vyrábí z obohaceného uranu, kdy se např. procesem plynové difuze nebo na centrifugách zvyšuje obsah izotopu 235U v izotopové směsi. V přírodním uranu je 235U kolem 0,7 %, pro energetické reaktory se zvyšuje zhruba na 3 % - 4 %. Po obohacovacím procesu zbyde ochuzený uran s obsahem asi 0,2 % - 0,4 % 235U, což je hluboko pod úrovní, kdy by mohla nastat řetězová štěpná reakce. Při obohacování se většinou používá uran ve formě hexafluoridu (UF6), zbyde tedy ochuzený hexafluorid uranu (značí se DUHF nebo DUF6). Defluorizací se transformuje do chemicky bezpečného stavu práškovitého oxidu uranu, který se může dlouhodobě skladovat bez nebezpečí pro životní prostředí. Oxid chuzeného uranu se také používá pro výrobu MOX - uranovo plutoniového paliva pro rychlé množivé reaktory.

1 2 3 4 5 6 » 68 ...

Nejnovější články

Další etapa hledání hlubinného úložiště splněna

ÚJV Řež letos v červnu úspěšně dokončila šestiletý projekt pro podporu hodnocení bezpečnosti hlubinného úložiště použitého jaderného paliva v ČR.

Transparentní baterie místo oken

Transparentní baterie by mohly nahrazovat sklo v oknech. Zatím mají jen velmi malý výkon, ale ten se bude jistě zvyšovat. Většina výzkumů baterií se zaměřuje na zvyšování ...

Mikrobi spali sto milionů let - a vzbudili se

Před sto miliony let, dlouho předtím, než se po planetě potuloval Tyrannosaurus rex, pohřbilo oceánské dno společenství mikrobů. Čas plynul, kontinenty se posouvaly, oceány rostly a zase se zmenšovaly, na Zemi ...

Den s experimentální fyzikou 2020

Den s experimentální fyzikou patří mezi populární akce pořádané Fyzikálním korespondenčním seminářem - FYKOS. Každoročně nabízí účastníkům pohled ...

Generace Z: Jak změní pracovní trh nástup studentů, kteří žijí on-line?

Na trh práce přichází generace Z – mladší, průbojnější a „modernější“ než jejich předchůdci, mileniálové. Co nového lidé narození po roce 1995 firmám nabízejí?

Nejnovější video

Bez jaderné energie se ve vesmíru daleko nedostaneme

Krátké výstižné video z dílny Mezinárodní agentury pro atomovou energii ve Vídni ukazuje využití jaderné energie a jaderných technologií při výzkumu vesmíru. Ne každý ví, že jádro pohání vesmírné sondy už po desetiletí. Zopakujme si to. (Film je v angličtině.)

close
detail