Návody na pokusy

Článků v rubrice: 70

Bomba na kuchyňském stole

Internetem koluje mnoho lákavých návodů na zhotovení zábavné fyzikální hračky, dramaticky demonstrující přeměnu potenciální energie na kinetickou. Stačí zadat do vyhledávače termín „Stick Bomb“, čili v překladu „bomba z tyčinek“. Pro sestavení experimentální „bomby“ jsou nejvhodnější špachtle, které se prodávají v lékárně pod názvem Ústní lžička. Z prohnutých špachtlí lze vytvářet různé důmyslně propletené mřížky, které drží pohromadě silami pružnosti. Stačí však některou špachtli uvolnit a celá konstrukce se bleskurychle rozpadne – doslova exploduje.

Fotogalerie (12)
Obr. 11 Hotový řetězec, připravený k „explozi“ (foto autor)

Po prostudování několika návodů jsme se rozhodli sestavit a vyzkoušet dostatečně dlouhou řetězovou vazbu. Na instruktážních obrázcích a videích to vypadalo, že je proplétání špachtlí snadné. Ve skutečnosti se však prohnuté špachtle bránily dodržet pravidelné uspořádání, smekaly se ze správných poloh a vznikající řetězec byl připraven kdykoli se předčasně rozpadnout. Prostě úspěšné sestavení delšího řetězu bylo velmi nejisté. Došli jsme k názoru, že bude vhodné provést inovaci. Kromě špachtlí a šikovných prstů jsme použili i čtyři plastové svorky (obr. 1), což se osvědčilo, a sestavení řetězce je nyní spolehlivé a probíhá ráz na ráz.

Skládáme řetězec

V úvodu sestavíme první čtyři špachtle (obr. 2) a jejich spoje uchytíme svorkami (obr. 3). Tři volné konce pružně propojíme pátou špachtlí Z, která vytvoří začátek celého řetězce (obr. 4). Její konce uchytíme dvěma svorkami S1, S2, které ponecháme na místě až do dokončení celé sestavy (obr. 5). A nyní už zahájíme rutinní práci – prodlužování řetězce. Rukou přidržíme „poslední“ spoj, podsuneme další špachtli 2 a uchytíme ji svorkou B (obr. 6). V následujícím kroku rukou přidržíme poslední spoj, vložíme špachtli 1 a uchytíme ji přesunutou svorkou A. Podobně na opačné straně řetězce vložíme špachtli 2 a uchytíme ji přesunutou svorkou B (obr. 7). Tyto dvě operace opakujeme krok za krokem a prodlužujeme tak řetězec (obr. 8), až dosáhneme požadované délky (obr. 9). Řetězec zakončíme poslední špachtlí K a opatrně odstraníme všechny svorky na začátku i na konci (obr. 10, obr. 11). Výsledná konstrukce sice drží pohromadě, ale je značně labilní. Stačí malý vnější impulz a součásti se prudce rozletí na všechny strany (video Exploze).

Trocha fyziky na závěr

Bouřlivý rozpad řetězce demonstruje přeměny mechanické energie a zákon zachování energie. Vytrhneme-li špachtli K, potenciální energie pružnosti, ukrytá v prohnutých špachtlích, se postupně mění na kinetickou energii letících špachtlí. Efektní exploze „Stick Bomb“ však usnadní i pochopení vzniku a průběhu štěpné (řetězové) reakce v jaderném reaktoru (obr. 12). Potenciální energii pružnosti prohnutých špachtlí můžeme přirovnat k energii skryté v jádrech uranu 235U a vytržení špachtle K simuluje rozštěpení prvního jádra 235U pomalým neutronem. Letící špachtle představují fragmenty štěpení, jejichž kinetická energie vznikla z části uvolněné jaderné energie. V jaderném reaktoru se pak kinetická energie fragmentů mění na teplo využívané k výrobě páry pro pohon turbíny.

Video

Exploze (exploze.mp4), zdroj: autor. Video najdete na této stránce v rubrice Videofilmy.

Jaroslav Kusala
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Existuje hypotetická částice X 17?

Fyzika nás učí, že existují 4 základní interakce, tedy přírodní síly, které vše ovládají a vysvětlují konstrukci světa dle současného stavu poznání - gravitace, elektromagnetická síla, slabá a silná interakce. Zdá se, že vědci jsou na stopě páté fundamentální přírodní síly.

Proč komáři koušou zrovna vás

Někteří lidé mohou sedět venku celé léto a komáři na ně takzvaně „nejdou“. Jiní se objeví za letního večera venku a okamžitě si musejí škrábat komáří kousance, přestože se koupali v repelentu. Co s tím? Důvodem je většinou neviditelná chemická clona ve vzduchu kolem nás.

Náměty do globální diskuse o energetice

World Nuclear Association ve své informační knihovně shromáždila fakta a argumenty, které bychom měli mít na zřeteli, diskutujeme-li o energetické budoucnosti. Změna klimatu není zdaleka jediným hlediskem.

Ocelová schránka pro 150 000 000 °C horké plazma

Korea dokončila první sektor vakuové komory! Málokdo mimo fúzní komunitu asi zaregistroval, co se nyní děje na jihu Francie, sto kilometrů severně od Marseille. Do vědeckého centra Cadarache se začínají svážet z celého světa gigantické supravodivé magnetické ...

Olovo tvrdší než ocel

Řeknete si, že to není možné, protože každý ze školy ví, že olovo je měkký kov. Avšak vědcům se podařilo olovo rychle stlačit velmi výkonným laserem. Díky tomu se typicky měkké olovo stalo dvěstěpadesátkrát tvrdším než je tvrzená ocel.

Nejnovější video

Bez jaderné energie se ve vesmíru daleko nedostaneme

Krátké výstižné video z dílny Mezinárodní agentury pro atomovou energii ve Vídni ukazuje využití jaderné energie a jaderných technologií při výzkumu vesmíru. Ne každý ví, že jádro pohání vesmírné sondy už po desetiletí. Zopakujme si to. (Film je v angličtině.)

close
detail