Studenti

Článků v rubrice: 338

Studium extrémních stavů jaderné hmoty

Bezprostředně po Velkém třesku (tzv. Big Bangu) byl náš vesmír tvořen velmi horkou a hustou hmotou z kvarků, základních stavebních prvků hmoty, a gluonů, zprostředkujících tzv. silnou interakci. Ta váže kvarky například v protonech a neutronech. Tato primární hmota, tzv. kvark-gluonové plazma, postupně expandovala a ochlazovala se. To dalo vzniknout částicím, např. protonům a neutronům, jak je známe dnes. Studium kvark-gluonového plazmatu připraveného v laboratorních podmínkách tedy umožňuje putovat zpět v čase až do zlomku vteřiny po Velkém třesku.

Fotogalerie (5)
Projekt je podpořen EU z operačního programu Vzdělávání pro konkurenceschopnost.

Kvark gluonové plazma vzniká i při srážkách těžkých iontů pohybujících se téměř rychlostí světla ve velkých urychlovačích částic. Jeho studium je tematickou náplní tříletého projektu „Dlouhodobé zajištění vysoce kvalitního výzkumu v oblasti studia extrémních stavů jaderné hmoty“ podpořeného EU z operačního programu Vzdělávání pro konkurenceschopnost.

Projekt snese mezinárodní srovnání

Cíl projektu vymezuje již jeho název. V podstatě jde o realizaci výzkumu v Ústavu jaderné fyziky AV ČR (ÚJF), v.v.i., který se týká extrémních stavů jaderné hmoty na úrovni konkurující projektům probíhajícím ve světově uznávaných laboratořích. Takový výzkum by nebyl možný bez zapojení českých vědců, studentů a doktorandů z ÚJF do výzkumné práce v mezinárodních experimentech ALICE a STAR probíhajících v Evropském středisku jaderného výzkumu CERN a v Brookhavenské národní laboratoři v USA. A právě toto zapojení do mezinárodních výzkumných týmů umožnil projekt zahájený již v létě 2012. Už za krátkou dobu se na dosažení výsledků, které publikovaly mezinárodní vědecké časopisy, podíleli i čeští vědci a studenti z ÚJF.

Mládí se činí

Další důležitý cíl projektu je výchova mladých vědců, doktorandů a studentů a jejich zapojení do experimentů s kvark-gluonovým plazmatem vznikajícím při srážkách těžkých iontů na velkých urychlovačích. Zde mladí pracují společně a pod vedením vědeckých pracovníků z ÚJF a dvou významných odborníků ze zahraničí – doc. Romana Pasechnika z Univerzity v Lundu ve Švédsku a dr. Jozefa Ferenceie z Ústavu experimentální fyziky SAV v Košicích. Někteří studenti právě nyní dokončují práci na svých dizertacích. Tak rozsáhlé zapojení studentů do výzkumné práce a zvýšení jejich odbornosti by nebylo možné bez podpory poskytované v rámci tohoto projektu. Jde o studenty a doktorandy z Matematicko fyzikální fakulty Univerzity Karlovy v Praze a z Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze, kteří jsou zaměstnáni v ÚJF. Do programu se zatím zapojilo celkem 16 studentů a doktorandů. Kolektiv řešitelského týmu zahrnuje kromě dvou zahraničních vědců pět vědeckých pracovníků, tři postdoktorandy a dvě administrativní pracovnice.

Výsledky

Členové řešitelského týmu, studenti a doktorandi provádějí analýzu dat zjištěných experimenty; ta přináší nové poznatky o vlastnostech kvark-gluonového plazmatu. Zásadní je také práce na vývoji a výrobě součástí detektorů, které v experimentech zaznamenávají produkty srážek těžkých iontů. Stejně nepostradatelná je práce na nástrojích pro zpracování dat, tzn. softwarových nástrojích, používajících nejnovější dostupné technologie a hardware (specializované výpočetní a úložné servery). Členové řešitelského týmu, studenti a doktorandi již přednesli více než 30 prezentací na mezinárodních konferencích a workshopech a opublikovali 20 významných výsledků týkajících se studia extrémních stavů jaderné hmoty. Současně byly v rámci tohoto projektu spolupořádány dvě mezinárodní konference („Understanding hot and dense QCD matter“ v Praze v září 2013 a „Advanced Computing and Analysis Techniques“ také v Praze přesně o rok později) a dvě regionální porady experimentu STAR (Praha květen 2014 a březen 2015).

Podrobnosti o zajímavých výsledcích týmu bude Třípól přinášet v dalších článcích.

Bližší informace

Podrobné informace o projektu lze získat na http://gemma.ujf.cas.cz/~adamova/OPVK.v1/home.html. (Registrační číslo projektu: CZ.1.07/2.3.00/20.0207)

Dagmar Adamová
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Model lidské placenty

Těhotenství je obdobím vzrušení, ale i obav o zdravý vývoj plodu a pohodu nastávající matky. Během čtyřiceti týdnů těhotenství existuje mnoho vnějších faktorů, ...

Před pětadvaceti lety vyrobil Temelín první elektřinu

Přesně před 25. lety, 21. prosince 2000 o půl deváté večer, připojili energetici nejvýkonnější český zdroj k přenosové soustavě. Historické chvíle se účastnili vrcholní ...

Skvělý dárek pod stromeček – audiokniha Zpráva z Hádu

Třípól doporučuje audioknihu Zpráva z Hádu, autorky Edity Dufkové, členky redakční rady! Jednou z rubrik našeho časopisu je Sci-fi, neboť dobré sci-fi příběhy vždy čerpají z vědy ...

MAGIC: Laserová značka s pomocí AI osvětluje původ rakoviny

Výzkumníci EMBL, Evropské mikrobiální laboratoře, vyvinuli nový nástroj založený na umělé inteligenci, který prostřednictvím molekulárních laserových značek ...

Pětidenní cesta pro nejdelší a nejširší komponentu ITER

Rychlostí chůze trvá dosažení lokality ITER z Berre-l’Étang, vzdáleného 70 kilometrů, přibližně 16 hodin. Pokud ale plánujete cestovat pouze mezi 22:30 a časnými ranními hodinami následujícího ...

Nejnovější video

Stellarátory - budoucnost energetiky?

Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.

close
detail