Studenti

Článků v rubrice: 222

Studium extrémních stavů jaderné hmoty

Bezprostředně po Velkém třesku (tzv. Big Bangu) byl náš vesmír tvořen velmi horkou a hustou hmotou z kvarků, základních stavebních prvků hmoty, a gluonů, zprostředkujících tzv. silnou interakci. Ta váže kvarky například v protonech a neutronech. Tato primární hmota, tzv. kvark-gluonové plazma, postupně expandovala a ochlazovala se. To dalo vzniknout částicím, např. protonům a neutronům, jak je známe dnes. Studium kvark-gluonového plazmatu připraveného v laboratorních podmínkách tedy umožňuje putovat zpět v čase až do zlomku vteřiny po Velkém třesku.

Fotogalerie (5)
Projekt je podpořen EU z operačního programu Vzdělávání pro konkurenceschopnost.

Kvark gluonové plazma vzniká i při srážkách těžkých iontů pohybujících se téměř rychlostí světla ve velkých urychlovačích částic. Jeho studium je tematickou náplní tříletého projektu „Dlouhodobé zajištění vysoce kvalitního výzkumu v oblasti studia extrémních stavů jaderné hmoty“ podpořeného EU z operačního programu Vzdělávání pro konkurenceschopnost.

Projekt snese mezinárodní srovnání

Cíl projektu vymezuje již jeho název. V podstatě jde o realizaci výzkumu v Ústavu jaderné fyziky AV ČR (ÚJF), v.v.i., který se týká extrémních stavů jaderné hmoty na úrovni konkurující projektům probíhajícím ve světově uznávaných laboratořích. Takový výzkum by nebyl možný bez zapojení českých vědců, studentů a doktorandů z ÚJF do výzkumné práce v mezinárodních experimentech ALICE a STAR probíhajících v Evropském středisku jaderného výzkumu CERN a v Brookhavenské národní laboratoři v USA. A právě toto zapojení do mezinárodních výzkumných týmů umožnil projekt zahájený již v létě 2012. Už za krátkou dobu se na dosažení výsledků, které publikovaly mezinárodní vědecké časopisy, podíleli i čeští vědci a studenti z ÚJF.

Mládí se činí

Další důležitý cíl projektu je výchova mladých vědců, doktorandů a studentů a jejich zapojení do experimentů s kvark-gluonovým plazmatem vznikajícím při srážkách těžkých iontů na velkých urychlovačích. Zde mladí pracují společně a pod vedením vědeckých pracovníků z ÚJF a dvou významných odborníků ze zahraničí – doc. Romana Pasechnika z Univerzity v Lundu ve Švédsku a dr. Jozefa Ferenceie z Ústavu experimentální fyziky SAV v Košicích. Někteří studenti právě nyní dokončují práci na svých dizertacích. Tak rozsáhlé zapojení studentů do výzkumné práce a zvýšení jejich odbornosti by nebylo možné bez podpory poskytované v rámci tohoto projektu. Jde o studenty a doktorandy z Matematicko fyzikální fakulty Univerzity Karlovy v Praze a z Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze, kteří jsou zaměstnáni v ÚJF. Do programu se zatím zapojilo celkem 16 studentů a doktorandů. Kolektiv řešitelského týmu zahrnuje kromě dvou zahraničních vědců pět vědeckých pracovníků, tři postdoktorandy a dvě administrativní pracovnice.

Výsledky

Členové řešitelského týmu, studenti a doktorandi provádějí analýzu dat zjištěných experimenty; ta přináší nové poznatky o vlastnostech kvark-gluonového plazmatu. Zásadní je také práce na vývoji a výrobě součástí detektorů, které v experimentech zaznamenávají produkty srážek těžkých iontů. Stejně nepostradatelná je práce na nástrojích pro zpracování dat, tzn. softwarových nástrojích, používajících nejnovější dostupné technologie a hardware (specializované výpočetní a úložné servery). Členové řešitelského týmu, studenti a doktorandi již přednesli více než 30 prezentací na mezinárodních konferencích a workshopech a opublikovali 20 významných výsledků týkajících se studia extrémních stavů jaderné hmoty. Současně byly v rámci tohoto projektu spolupořádány dvě mezinárodní konference („Understanding hot and dense QCD matter“ v Praze v září 2013 a „Advanced Computing and Analysis Techniques“ také v Praze přesně o rok později) a dvě regionální porady experimentu STAR (Praha květen 2014 a březen 2015).

Podrobnosti o zajímavých výsledcích týmu bude Třípól přinášet v dalších článcích.

Bližší informace

Podrobné informace o projektu lze získat na http://gemma.ujf.cas.cz/~adamova/OPVK.v1/home.html. (Registrační číslo projektu: CZ.1.07/2.3.00/20.0207)

Dagmar Adamová
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Naše první slova

Původ řeči je jednou z největších záhad lidstva. „Na začátku bylo slovo...“ praví Bible. Ale jaké? Minimálně od biblických časů jsme se snažili rozluštit původ lidské řeči. Je to konec konců jedna z charakteristik, která nás odlišuje od jiných živočichů.

Černá smrt gumy a jak jí čelit

Guma je jedním z neopěvovaných velkých hrdinů průmyslové revoluce. Kromě jejích obvyklých aplikací, jako jsou pneumatiky, kondomy, elastické spodní prádlo, apod., představuje základní složku asi ve 40 000 výrobcích, včetně absorbérů nárazu, hadic, lékařských nástrojů, těsnění, atd.

Z historie i současnosti vynálezů a jejich ochrany

Vynálezy a objevy často přicházejí na svět klikatými cestičkami. Jednou to vypadá, jako by se na ně čekalo tak netrpělivě, že se zrodí hned v několika hlavách v různých koutech světa, jindy je náhodou nebo omylem objeveno něco, s čím si nikdo neví rady.

Jak vyčíslit ekonomické přínosy jádra? A co na to evropský jaderný průmysl?

Společnost Deloitte vypracovala pro Euratom studii o přínosech jaderné energetiky v roce 2019 a 2050. V současné době je v provozu ve 14 zemích EU 126 komerčních reaktorů o výkonu 118 GWe. Do roku 2050 by měl jejich výkon stoupnout na 150 GWe, budou se ale muset snížit investiční náklady.

Astronauti se pořád ptali: Jak se daří myškám?

Myši, švábi, japonské křepelky, ryby, škeble, rostliny.... ti všichni měli možnost ochutnat Měsíc! Po návratu Apolla 11, od jehož mise letos uplynulo 50 let, putovalo množství vzácných vzorků měsíční horniny do laboratoří.

Nejnovější video

Bez jaderné energie se ve vesmíru daleko nedostaneme

Krátké výstižné video z dílny Mezinárodní agentury pro atomovou energii ve Vídni ukazuje využití jaderné energie a jaderných technologií při výzkumu vesmíru. Ne každý ví, že jádro pohání vesmírné sondy už po desetiletí. Zopakujme si to. (Film je v angličtině.)

close
detail