Bez zařazení

Článků v rubrice: 409

První krok na cestě k umělým svalům

Vědcům z Heyrovského ústavu se podařilo ovládat pohyb uhlíkové nanorole – materiálu, který může v budoucnu nahradit práci svalů v lidském těle. Experimentálně dokázali do této doby pouze teoreticky předpokládaný jev – rozvinování a svinování uhlíkové nanorole. I když do dnešního dne existovaly hypotézy a simulace, Pavel Janda se spolupracovníky z Ústavu fyzikální chemie J. Heyrovského AV ČR jsou prvními, kterým se podařilo pohyb nanorole řídit. O svém objevu vědci publikovali článek v odborném časopise Physical Chemistry Chemical Physics (PCCP). Nanorole, tvořená svinutými listy grafenu, by tak mohla v budoucnu získat významné místo v nanotechnologiích.

Fotogalerie (2)
Mikroskop atomárních sil, kterým jsou pohyby nanorole pozorovatelné (Zdroj: Ústav fyzikální chemie J. Heyrovského AV ČR, v.v.i.)

Princip nanorole je jednoduchý, jedná se o ruličku svinutého grafenu, která by vzdáleně mohla připomínat pérko do hodinek. Její unikátní vlastností je schopnost převádět elektrické napětí na pravidelný opakovaný pohyb rozvinování a zavinování. Toto “cvičení“ nanorole se jeví jako ideální pro využití například v biomedicínském inženýrství. Nahradit by mohla třeba svalová vlákna. V zavinutém stavu má totiž nanorole průměr v rozsahu jednotek nanometrů, její délka se pohybuje od stovek nanometrů až po několik mikronů a k rozvinutí stačí napětí několika desetin voltu.

Češi ji přiměli k práci

„I když je její širší využití v biomedicíně zatím pouze vzdálenou budoucností, potenciál nanorolí nelze zpochybnit. Lidské tělo je plné elektrolytu, což je prostředí, kde nanorole pracuje. Když připočteme její biokompatibilitu (lidské tělo ji bez problémů snáší) a odolnost, máme tu potenciálně ideální náhradu pohybovačů, např. svalů,“ vysvětluje Pavel Janda. Ten společně s Hanou Tarábkovou a Zdeňkem Zelingerem dlouhodobě zkoumá vlastnosti grafitového povrchu. O pohybových vlastnostech uhlíkových nanorolí se zmiňovaly teoretické hypotézy již dříve, nikdo je však dosud nepotvrdil pozorováním v experimentu. Pohyby nanorole jsou viditelné pouze speciálním mikroskopem, který je schopen pracovat ve vodném prostředí.

Uznání ve světovém časopise

„Momentálně se nacházíme v prvotní fázi výzkumu. Článkem, který jsme v britském časopise Physical Chemistry Chemical Physics publikovali, dáváme k dispozici vědecké obci základy, na kterých se v dalších výzkumech dá stavět,“ upřesňuje Tarábková. Dosud vědci pracovali s nanoruličkami spontánně vzniklými na povrchu grafitu, v budoucnu se chtějí zaměřit na studium nanoruliček připravených na míru, tj. s definovanou délkou a počtem závitů. To je jeden z mnoha důležitých kroků směrem k jejich praktickému využití. „Aplikovaný výzkum a z něho vycházející případné uplatnění v praxi jsou založeny na úspěšnosti základního výzkumu,“ vysvětluje Janda. „Naší prací teď bude dokázat, že investice do dalšího výzkumu pohybu nanorolí má smysl.“

Nejen pro lidi, ale i pro roboty a technická zařízení

I když se jedná o počátky výzkumu, vize se nedrží při zemi. Biomedicínské inženýrství je jen jednou z oblastí, kde by nanorole našly své uplatnění, další oblastí je robotika a konstrukce mikroelektromechanických zařízení (MEMS). Hovoří se např. o nanoventilu, kde postupné stahování závitů nanorole může regulovat mikroskopické průtokové cesty, nebo o nanopumpě, která by periodickými koordinovanými stahy umožnila transportovat velmi malá množství tekutin. Stejně jako v biomedicíně se však zatím jedná o budoucnost, které čeští vědci úspěšně vyrazili naproti.

Ústav fyzikální chemie J. Heyrovského

Je světově uznávaným ústavem Akademie věd ČR, pokračujícím v práci oceněné Nobelovou cenou. Soustředí se zejména na výzkum struktury a reaktivity látek na atomární a molekulární úrovni a výsledky své práce nabízí k využití v medicíně, průmyslu, vzdělání a běžném životě. Ing. Pavel Janda, CSc., je zástupcem vedoucího oddělení Elektrochemických materiálů. Zabývá se elektrochemií a nanomorfologií elektrodových materiálů s využitím mikroskopie rastrovací sondou v kapalinách. RNDr. Hana Tarábková, PhD., se zabývá studiem povrchů a vlastností nanomateriálů metodami mikroskopie rastrovací sondou. Prof. Zdeněk Zelinger, CSc., je odborníkem v oboru molekulové fyziky a infračervené spektroskopie. Specializuje se na laserovou optoakustickou detekci v chemické analýze.

Více informací: www.jh-inst.cas.cz

Klára Conková

(red)
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Přehled současného stavu SMR ve světě

O  SMR, malých modulárních reaktorech, jsme již psali několikrát. Ze souhrnného materiálu NEA (Jaderné energetické agentury OECD) jsme pro čtenáře Třípólu vybrali přehledy jednotlivých projektů (stav v r.

Co s vysloužilými fotovoltaickými panely, turbínami a bateriemi?

Růst výroby elektřiny z obnovitelných zdrojů energie (OZE) a růst počtu elektrických vozidel (EV) je klíčem ke globálnímu snížení závislosti na fosilních palivech, snížení ...

Co nám vodní houby mohou říci o vývoji mozku

Když čtete tyto řádky, pracuje vysoce sofistikovaný biologický stroj – váš mozek. Lidský mozek se skládá z přibližně 86 miliard neuronů a řídí nejen tělesné funkce od vidění ...

Co uvádí vodní houby do pohybu

Vodní houby nemají neurony ani svaly, přesto se pohybují.  Jak to dělají a co nám to říká o vývoji krevních cév u vyšších živočichů, odhalili vědci z Evropské ...

Erupce sopky Santorini před 520 000 lety

Hluboko pod středomořským dnem, které obklopuje řecký ostrov Santorini, objevili vědci pozůstatky jedné z největších sopečných erupcí, které kdy Evropa viděla.

Nejnovější video

Jak funguje PCR test na coronavirus

Krásně a jednoduše vysvětleno se srozumitelnými animacemi. V angličtině.

close
detail