Fyzika a klasická energetika

Článků v rubrice: 265

Supravodivé germanium za pokojové teploty?

V 19. století objevil německý fyzik Georg Simon Ohm (1780-1854), že elektrický odpor je charakteristickou vlastností každého vodiče a závisí na jeho délce, průřezu a materiálu, z něhož je zhotoven (Ohmův zákon). Elektrotechnici se snaží v elektrických obvodech ztráty způsobené odporem minimalizovat. K převratnému objevu došlo v této oblasti v roce 1911, kdy nizozemský fyzik, „gentleman absolutní nuly“, Heike Kamerlingh Onnes, objevil jev zvaný supravodivost. V okamžiku, kdy teplota určitých vodičů klesne pod přechodovou (kritickou) teplotu, klesne jejich elektrický odpor náhle k nule. Mezi 26 prvků, které se takto chovají, patří rtuť, cín, olovo aj. Použití supravodičů však není nijak snadnou záležitostí. Pro dosažení zamýšleného účinku se musí teplota materiálu blížit hodnotě absolutní nuly (0 K = -273,15 °C). A aby se požadované hodnoty podařilo docílit, musí být vodič chlazen kapalným heliem nebo vodíkem. Jen u nově vyvinutých keramických materiálů stačí zkapalněný dusík (pro teploty kolem -200 °C). Na chlazení je ovšem potřeba energie. Dalším problémem je, že silnější magnetické pole dokáže supravodivost zrušit.

Fotogalerie (1)
Čisté germánium (zdroj: Wikimedia Commons, autor: Gibe (selfmade) (German Wikipedia))

Snem několika generací fyziků je dosažení supravodivosti (vyznačující se nulovým elektrickým odporem) za pokojové teploty. Na novém objevu vědců z čínských a amerických výzkumných organizací (Carnegie Institution) je zajímavé, že se podařilo supravodivosti dosáhnout u germania, tedy u polovodiče a nikoli kovu (a to jak v krystalické, tak v amorfní fázi). Germanium bylo poznáno a využito jako polovodič dříve než dnes mnohem rozšířenější křemík, který leží v v periodické tabulce hned nad germaniem. Zpracování (hlavně nesmírně vysoké vyčištění) germania oproti křemíku bylo jednodušší, ale germanium je dražší, protože se ho v zemské kůře vyskytuje podstatně méně.

Místo nízké teploty extrémní tlak

S využitím objevu supravodivosti germania za pokojové teploty to však tak snadné nebude, protože postup bohužel vyžaduje pro změnu extrémní tlak. Sdělení ve Physical Rewiew Letters uvádí, že v prvním kroku jde o 66 GPa (cca 650 000 atmosfér). Tehdy germanium získá vlastnosti kovu a stane se vodivým, zatím „normálně“. Po dalším zvýšení tlaku na 90 GPa však dojde k další změně struktury (fázovému přechodu) a materiál ztratí elektrický odpor. Supravodivost za těchto podmínek způsobují fonony, tj. kolektivní vibrace v krystalové struktuře materiálu (fonon je kvazičástice – kvantum zvuku, jako je foton kvantem světla). Supravodivá fáze má oproti normálnímu germaniu i jiné fyzikální vlastnosti, mj. větší hustotu. Zajímavé je, že většinu vlastností stlačeného germania se podařilo odvodit pomocí teoretických předpokladů a počítačových simulací a experimentálně je potvrdit až dodatečně.

Vzhledem k potřebě obrovského tlaku (podmínky jsou ještě extrémnější než jakákoliv nízká teplota) se bezprostředního využití objevu v praxi dočkáme v brzké době jen stěží. Proto také tento zajímavý objev víceméně přešel bez zájmu médií i odborné veřejnosti. Nicméně germanium zřejmě neřeklo v elektrotechnice poslední slovo, i když v uplynulých desetiletích jeho využití postupně klesalo na úkor křemíku. Objev supravodivosti u germania při pokojové teplotě by mohl nejen změnit konstrukci budoucích počítačů a elektronických zařízení, ale má i značný význam pro základní výzkum v teoretické fyzice.

Germanium

Objevil ho roku 1886 německý chemik Clemens A. Winkler a pojmenoval podle své vlasti. Již před ním předpověděl jeho existenci Mendělejev, nazval jej eka-silicium (protože stojí za křemíkem) a poměrně přesně určil jeho základní fyzikálně-chemické vlastnosti (5,323 g/cm3, tvrdost 6). V pevném skupenství je germanium šedobílé a chová se jako polovodič, v kapalném skupenství je kovem (podobně jako např. rtuť). V přírodě se vyskytuje řídce, průměrný obsah v zemské kůře je pouze 5-7 mg/kg, obvykle jako příměs v zinkových a stříbrných rudách. Bývá obsaženo jako stopová příměs v některých ložiscích uhlí a z uhelného popele se také průmyslově získává.

Zdroje

Computerworld.cz/technologie, 25. 04. 11, Wikipedia.

Tesařík Bohumil
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Data z mizejícího ledovce

Bolívijský ledovec Huayna Potosí se každým rokem zmenšuje a ustupuje do svahu. Ve výšce 5 100 metrů nad mořem je vzduch kolem něho řídký.

Druhý pokus na ITERu na výbornou

Transport sektorového modulu #7 vakuové nádoby do montážní jámy tokamaku ITER ve čtvrtek 10. dubna 2025 představoval ne „dva v jednom“, nýbrž „mnoho věcí v jednom“.

Malé a velké reaktory

Mezinárodní agentura pro atomovou energii ve Vídni předpovídá, že do roku 2050 se instalovaná kapacita jaderných reaktorů na světě zdvojnásobí – z 371 GW(e) v roce 2022 na 890 GW(e) do roku 2050.

Malinké želvušky přežijí i ve vesmíru

Droboučký živočich, želvuška (tardigrada) může přežít nehostinný chlad i smrtící ionizující záření ve vesmíru. Všudypřítomná mikroskopická zvířátka, ...

Kvantové počítače budou splněným snem hackerů

Můžeme zastavit hackery, kteří loví vše od vojenských tajemství po bankovní informace? Až se kvantové počítače stanou samozřejmostí, současné kryptografické systémy zastarají.

Nejnovější video

Stellarátory - budoucnost energetiky?

Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.

close
detail