Fyzika a klasická energetika

Článků v rubrice: 265

Nový druh magnetu

Sloučenina uranu a antimonu USb2 generuje magnetismus úplně jiným způsobem než dosud známé magnety. Vědci jej nazvali „singletový” magnetismus. Elektrony, záporně nabité elementární částice, vytvářejí své vlastní malé magnetické pole. Je to důsledek kvantové mechanické vlastnosti známé jako spin. Ve většině objektů tato magnetická pole směřují do náhodných směrů a vzájemně se ruší. (To je třeba i důvod, proč vaše tělo není obrovským magnetem, přestože obsahujete více než 1029 elektronů!) Ale v určitých materiálech se tato pole uspořádávají. Když se to stane, vytvoří se magnetické pole, které je dostatečně silné, aby mohlo například přitahovat železo. Takřka každý známý magnet ve vesmíru funguje tímto způsobem, pokud nevytváří magnetické pole elektrickým proudem jako elektromagnety (a pravděpodobně i Zeměkoule).

Fotogalerie (1)
V singletových magnetech vzniká magnetické pole nikoli náhlým uspořádáním velké skupiny chaotických magnetických polí, ale souhrou menších skupin elektronů a jejich magnetických polí. (webstránka IEEE Spectrum)

Nově objevený magnet na bázi singletů však funguje zcela jiným způsobem. Ani jednotlivé elektrony v USb2 nemají tendenci směrovat své magnetické pole automaticky do stejného směru. Mohou však spolupracovat, a vytvářet tím kvantově-mechanické objekty zvané „excitony“. Jsou to tzv. kvazičástice, které nejsou diskrétními objekty, ale chovají se tak. (Podobnými kvazičásticemi – fonony – můžeme například popsat zvuk šířící se v hmotném prostředí, stejně jako světlo popisujeme pomocí fotonů.) Spinové excitony popisují takové interagující skupiny elektronů, které vytvářejí společné magnetické pole.

Magnetismus založený na singletech

Podle prohlášení výzkumných pracovníků zodpovědných za objev USb2 již dříve fyzici tušili, že skupiny spinových excitonů s magnetickými poli orientovanými stejným způsobem se mohou seskupit a vytvořit tak výrazné makroskopické magnetické pole. Nazvali tento efekt „magnetismus založený na singletech“. Tento fenomén byl již dříve prokázán při tzv. ultrachladných experimentech, kdy se výrazněji projevují zvláštnosti kvantové fyziky oproti fyzice klasické. Nyní fyzici poprvé ukázali, že tento druh magnetismu může existovat stabilním způsobem i mimo prostředí super nízkých teplot. Ve sloučenině USb2 se magnetické pole tvoří v záblesku a mizí téměř stejně rychle. Výsledky výzkumu vědci uvedli v dokumentu publikovaném 7. února v časopise Nature Communications.

Spinové excitony se sdruží a spustí kaskádu

Za normálních okolností se magnetické momenty v tyči ze železa postupně vyrovnávají, bez ostrých přechodů mezi zmagnetizovanými a nemagnetickými stavy. V magnetu založeném na singletu je skok mezi stavy ostřejší. Spinové excitony, obvykle dočasné objekty, se stávají stabilními poté, co se sdruží. A když se takové skupiny začnou vytvářet, nastartuje se kaskáda. Stejně jako padající kostky domina, spinové excitony vyplní celou látku velmi rychle a najednou, a sdruží se dohromady. Zdá se, že takto to funguje v USb2.

Výhodou je rychlost

Výhoda tohoto druhu magnetu je to, že překlápění mezi magnetizovanými a nemagnetizovanými stavy proběhne mnohem snadněji, a tím i rychleji než v normálních magnetech. Vzhledem k tomu, že i v počítačové technologii má stále velký význam ukládání informací založené na magnetismu, je možné, že jednou zařízení založená na singletovém magnetismu pomohou počítačům pracovat mnohem efektivněji než dnes.

Zdroje: https://www.nature.com/articles/s41467-019-08497-3

https://www.sciencedaily.com/releases/2019/02/190207075114.htm

https://spectrum.ieee.org/tech-talk/semiconductors/materials/new-magnet

https://www.newscientist.com/article/2193032-theres-a-weird-new-type-of-magnet-that-shouldnt-be-able-to-exist/

(red)
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Data z mizejícího ledovce

Bolívijský ledovec Huayna Potosí se každým rokem zmenšuje a ustupuje do svahu. Ve výšce 5 100 metrů nad mořem je vzduch kolem něho řídký.

Druhý pokus na ITERu na výbornou

Transport sektorového modulu #7 vakuové nádoby do montážní jámy tokamaku ITER ve čtvrtek 10. dubna 2025 představoval ne „dva v jednom“, nýbrž „mnoho věcí v jednom“.

Malé a velké reaktory

Mezinárodní agentura pro atomovou energii ve Vídni předpovídá, že do roku 2050 se instalovaná kapacita jaderných reaktorů na světě zdvojnásobí – z 371 GW(e) v roce 2022 na 890 GW(e) do roku 2050.

Malinké želvušky přežijí i ve vesmíru

Droboučký živočich, želvuška (tardigrada) může přežít nehostinný chlad i smrtící ionizující záření ve vesmíru. Všudypřítomná mikroskopická zvířátka, ...

Kvantové počítače budou splněným snem hackerů

Můžeme zastavit hackery, kteří loví vše od vojenských tajemství po bankovní informace? Až se kvantové počítače stanou samozřejmostí, současné kryptografické systémy zastarají.

Nejnovější video

Stellarátory - budoucnost energetiky?

Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.

close
detail