Jaderná fyzika a energetika

Článků v rubrice: 551

SKIN monitoruje veverky

Tlaková nádoba jaderného reaktoru (dále TNR) je jedním ze zařízení, jehož dokonalý technický stav je nutný nejen pro efektivní výrobu elektrické energie, ale hlavně pro bezpečnost celého reaktoru. Vyžaduje proto dokonalý servis. Kontrol je celá řada. Mezi provozní či předprovozní kontroly vnitřního povrchu TNR typu VVER patří kontroly ultrazvukem (UT), vířivými proudy (ET) nebo nepřímá metoda vizuální (VT) pomocí TV kamer. To vše umožňuje manipulátor SKIN, který vyvinula a vyrobila ŠKODA JS a. s. (ŠJS). Stručně řečeno, SKIN slouží pro nedestruktivní zkoušení tlakových nádob jaderných reaktorů z vnitřního povrchu. Jeho robustní konstrukce umožňuje i přenášení modulů např. pro odběr vzorků, měření tvrdosti a opravy TNR.

Fotogalerie (9)
Obr. 4 Detail zkušební hlavice manipulátoru SKIN pro zkoušení válcové části TNR

V roce 1982 byla tlaková nádoba reaktoru (TNR) typu VVER 440 2. bloku jaderné elektrárny V-1 (Jaslovské Bohunice, Slovensko) nedestruktivně zkoušena při provozní kontrole poprvé automatizovaným způsobem z vnitřního povrchu systémem Škoda REACTORTEST TRC. Tím začala etapa automatizovaného zkoušení reaktorů typu VVER, která ve ŠKODA JS trvá bez přerušení dodnes. Manipulátor SKIN se používá od roku 1992.

Konstrukce SKIN umožňuje zkoušky VVER 440 i VVER 1000

Hlavní manipulátor se montuje a zapojuje na montážním a přípravném pracovišti na podlaze reaktorového sálu. Tam se také kompletně nastavují pohybové jednotky s výjimkou polohy manipulátoru v obvodovém směru TNR.

 

Na přírubě TNR je umístěna kruhová dráha (kolejnice) a kontrolní měrka se závěsem. Na kruhovou dráhu se spouští úplně smontovaný a zapojený hlavní manipulátor. Po kruhové dráze pojíždí rotační rám obdélníkového tvaru. V jeho rozích jsou nohy s pojezdovými koly, snímačem polohy a hnacím ústrojím. Nohy jsou radiálně nastavitelné, tak aby bylo možné použít manipulátor SKIN při zkoušení reaktorů VVER 440 i VVER 1000. Konstrukce rotačního rámu umožňuje použití manipulátoru i v případě, že se před provozní kontrolou TNR nepodaří vyjmout z příruby reaktoru všechny svorníky.

V ose rotačního rámu je obdélníkový otvor, jímž prochází teleskopický sloup. Tento sloup je složen ze tří částí:

  • vodicího pevného sloupu, upevněného na rotační rám,
  • vnějšího teleskopického sloupu,
  • vnitřního teleskopického sloupu.

Na spodním konci vnitřního sloupu je uchycena příčná dráha, skládající se ze dvou profilů tvaru U, po jejichž spodních pásnicích pojíždějí kola radiálního vozu. Na obou čelech radiálního vozu jsou příruby pro upevnění zkušebních hlavic. Na jedné straně se montuje hlavice pro zkoušení obvodových svarů TNR nebo hlavice pro zkoušení válcových a rádiusových částí hrdel DN 500 (DN 850), nebo hlavice pro zkoušení válcové části TNR ultrazvukem difrakční technikou ToFD (Time of Flight Diffraction). Na druhou stranu radiálního vozu se montuje hlavice pro zkoušení ZM a rozhraní návaru a základního materiálu TNR.

 

Vedle příčné dráhy je hlavice pro detailní vizuální zkoušení (VT) barevnými i černobílými televizními kamerami. Sestává ze dvou naklápěcích jednotek a výsuvné jednotky. TV kamery jsou schopny snímat v libovolném místě vnitřní povrch TNR pod proměnným úhlem z volitelné vzdálenosti.

Používané zkušební hlavice umožňují:

  • zkoušení válcové části TNR ultrazvukem odrazovou technikou a vířivými proudy,
  • zkoušení válcové části TNR ultrazvukem difrakční technikou ToFD (2 sondy),
  • zkoušení válcových a rádiusových částí hrdel ultrazvukem odrazovou i difrakční technikou a vířivými proudy (maximálně 20 sond, z toho 16 sond pro válcovou část a 4 sondy pro rádiusovou část,
  • zkoušení dna TNR ultrazvukem odrazovou technikou a vířivými proudy (maximálně 6 sond).

Reaktor v přímém přenosu
Všechny čtyři zkušební hlavice doplňují televizní kamery a příslušné osvětlovací prvky povrchu pro kontrolu správné činnosti a také pro tzv. všeobecné zkoušky nepřímou vizuální metodou (VT). Další TV kamery jsou namontovány v hlavici pro zkoušení hrdel a také u hlavic pro zkoušení válcové části TNR ultrazvukem (UT) a vířivými proudy (ET).

 

Manipulátor je vyroben z korozně odolných materiálů, převážně nerezavějící oceli.

Motory, snímače polohy a všechny další části elektrické a elektronické výbavy jsou ve vodotěsných pouzdrech, ve kterých se trvale udržuje vnitřní přetlak vzduchem proti vnikání vody.

Další funkce

Od roku 2004 je k dispozici i modul pro zkoušení dna TNR. Rotační pohyb zde zajišťuje rotační rám, pro pohyb ve směru průměru TNR je použita lineární kroková jednotka.

 

K automatizovanému pohybu ultrazvukových sond po zkoušeném povrchu se při zkoušení obvodových svarů TNR využívá rotační rám a teleskopický sloup. Poloha rotačního rámu se odměřuje s rozlišením 0,01°, což u hladké válcové části TNR odpovídá 0,3 mm. Poloha sloupu má rozlišení 0,2 mm.

Posun zkušební hlavice se sondami po zkušebním povrchu je meandrovitý, tj. umožňuje dva pohyby:

  • plynulý měřicí pohyb (tzv. trip) se současným záznamem ultrazvukových dat a snímáním polohy; tento pohyb je orientován po obvodu TNR, tj. ve směru souřadnice „x“,
  • pohyb se snímáním pouze polohy (tzv. step) s orientací ve směru osy TNR, tj. ve směru souřadnice „y“.

Vzdálenost jednotlivých linií plynulého měřícího pohybu („šířka kroku“) se liší podle prozvučovaných oblastí TNR:

  • 5(1) mm, tj.(5 ± 1) mm pro zkoušení rozhraní ochranného austenitického návaru a základního materiálu TNR a pro zkoušení válcových částí hrdel DN 500 / DN 850,.
  • 7(1) mm pro zkoušení obvodových svarových spojů o jmenovité tloušťce do 200 mm a také pro zkoušení rádiusových částí hrdel DN 500 / DN 850,
  • 10(1) mm pro zkoušení obvodových svarových spojů o jmenovité tloušťce přes 200 mm.

Všechny pohyby manipulátoru SKIN snímají snímače polohy. Výchozí postavení každé pohybové jednotky a koeficient přepočtu dílků ukazatelů na milimetry se nastavují a kontrolují v průběhu montáže hlavního manipulátoru a při výměně modulů. Výsledky cejchování poloh pohybových jednotek manipulátoru jsou zaznamenávány do předepsaných protokolů.

 

Snímek manipulátoru SKIN je na obr. 1 až obr. 4, jeho schémata jsou na obr. 5 a obr. 6.

 


Zkušební systémy (manipulátory)

Pro automatizované nedestruktivní zkoušení TNR typu VVER (PWR) z vnitřního povrchu se používají dálkově ovládané systémy (manipulátory), které umožňují kontrolu nejen válcové části TNR, ale i hrdel, dna a v některých případech i příruby TNR. Konstrukční provedení jednotlivých manipulátorů se od sebe liší; dnes používané manipulátory můžeme rozdělit do čtyř skupin:

  • manipulátor s výsuvným teleskopickým sloupem,
  • manipulátor s centrálním (pevným) sloupem,
  • manipulátor s decentrálním (excentrickým) sloupem,
  • ponorka (ROV Remotely Operated underwater Vehicle)
    (o jedné jsme psali nedávno: www.3pol.cz/cz/rubriky/jaderna-energetika/469-susi-robot).

 

Jan Vít
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Nové jaderné projekty pro Evropu

Nejen Česká republika, která v právě probíhajícím výběrovém řízení poptává 4 nové jaderné bloky, ale i další evropské země plánují rozvoj jaderné energetiky.

Solární rok 2023

Vývoj solární energetiky v roce 2023 v Česku opět výrazně přidal na rychlosti. Podle dat Solární asociace se postavil téměř 1 gigawatt nových fotovoltaických elektráren (FVE), celkem jich vzniklo skoro 83 000.

Přehled současného stavu SMR ve světě

O  SMR, malých modulárních reaktorech, jsme již psali několikrát. Ze souhrnného materiálu NEA (Jaderné energetické agentury OECD) jsme pro čtenáře Třípólu vybrali přehledy jednotlivých projektů (stav v r.

Co s vysloužilými fotovoltaickými panely, turbínami a bateriemi?

Růst výroby elektřiny z obnovitelných zdrojů energie (OZE) a růst počtu elektrických vozidel (EV) je klíčem ke globálnímu snížení závislosti na fosilních palivech, snížení ...

Co nám vodní houby mohou říci o vývoji mozku

Když čtete tyto řádky, pracuje vysoce sofistikovaný biologický stroj – váš mozek. Lidský mozek se skládá z přibližně 86 miliard neuronů a řídí nejen tělesné funkce od vidění ...

Nejnovější video

Jak funguje PCR test na coronavirus

Krásně a jednoduše vysvětleno se srozumitelnými animacemi. V angličtině.

close
detail