Jaderná fyzika a energetika

Článků v rubrice: 591

ITER jako živý

Termojaderné palivo hmotnosti poštovní známky je spoutáno 23 tisíci tunami oceli a omotáno 150 tisíci kilometry supravodivých drátů – to bude tokamak ITER! Zdá se vám těch tun a kilometrů příliš? Vše lidské že je těmto číslům na hony vzdáleno? Pokusím se čtenáře přesvědčit o opaku. ITER se svými tunami a kilometry je vlastně jeden velký živý organismus!

Fotogalerie (15)
Ilustrační foto

Početí: Ačkoliv se to může zdát divné, rodiči nového tokamaku vlastně nejsou vědci, ale politici. V roce 1985 se spojili M. Gorbačov a R. Reagan, aby odsouhlasili postavení energetického zdroje, který by odpověděl na otázku, zda je možné civilní využití termojaderné energie. Rizikové těhotenství však hrozilo potratem. V roce 1998 vzdaly účast USA. Výběr rodiště trval tři roky! Místem, kde bude ITER vyrůstat, se nakonec stalo francouzské Cadarache, kde letos vysypou cisterny první kubíky betonu do lože zaujímajícího část z 42 hektarů připravených pro zařízení ITER. O otcovství se nyní ucházejí: Evropská unie, Rusko, Japonsko, Čína, Indie, Jižní Korea a opět USA!

Krev ITER, to je plazma. Ostatně slovo plazma v roce 1928 zvolil Irving Langmuir pro doutnavý výboj podle krevní plazmy. Plazma tokamaku je ionizovaná směs izotopů vodíku – deuteria a tritia.

Cévou je prstencová výbojová komora – toroid. Vnitřní stěnu toroidu tvoří panely z feriticko-martensitické nerez oceli pokryté mědí a pak beryliem. Na konstrukci této cévní stěny se podílí Fakulta jaderná a fyzikálně inženýrská ČVUT Praha a Ústav jaderného výzkumu Řež, a. s.

Srdcem tokamaku je magnetické pole. Na rozdíl od hmotného svalu je to ale neviditelné magnetické pole vytvářené elektromagnety. Supravodivé magnety ITER obsahují kilometry a tuny drátů. Část supravodivých vodičů pro ně vyrábí Čepecký strojírenský závod v Plazově v Rusku patřící korporaci TVEL, která pro Jadernou elektrárnu Temelín dodává palivové články.

Játra v tokamaku supluje divertor, který plazma čistí. Je to dolní část výbojové komory přizpůsobená k odvádění nežádoucích částic, které by nepříznivě ovlivňovaly fúzní reakci.

Kostru tokamaku tvoří vakuová komora s objemem 1400 m3 a hmotnosti 8 000 t, na které jsou upevněny ostatní části. Neutronové stínění komory z austenitické oceli – ocelové desky dotované borem – se testují v Rakousku. Vakuově těsná komora je vystavena teplotnímu gradientu 150 miliónů K/≈3 m, největšímu ve známém vesmíru.

Kůží tokamaku je dutinový kryostat naplněný heliem zajišťující tepelnou „pohodu“ zařízení. Póry jsou průchody v kryostatu.

Mozek ITER bude počítačový program fungující v prostředí CODAC přijímající řadu parametrů, které mu dodá 55 diagnostik. Bude schopen vyhodnotit vstupní data a během desítek mikrosekund zadat příslušné řídicí povely zdrojům vytvářejícím a hlídajícím plazma.

Funkci plic ITER zastávají bezesporu dva typy výkonných vakuových pump. Kryogenní pumpy nebudou zásobovat ITER kyslíkem jako nás naše plíce, ale naopak vakuem představujícím cca milióntinu atmosférického tlaku. Helium a vodík se budou čerpat adsorpcí, tedy zachycením molekul čerpaného plynu na vymražené dřevěné uhlí vyrobené z kokosových ořechů (Indonésie, ročník 2002).

Nemoci – to jsou v tokamaku nestability plazmatu. Nebezpečné jsou ELMs (Edge Localized Modes – nestability okrajového plazmatu) a disrupce. Nejúčinnější léčbou je prevence, proto se jak ELMs, tak disrupce budí řízeným způsobem, čímž se předchází jejich spontánnímu neřízenému vzniku – stejně jako při očkování.

ITER se poprvé nadechne kolem roku 2018. Pokud bude vitální, cesta k civilnímu využití fuzní energie bude volná!



Magnetické pole

Magnetický systém tokamaku ITER tvoří soustavy elektromagnetů. Tisícitunový Centrální solenoid je primárním vinutím transformátoru, který v plazmovém „sekundáru“ indukuje proud 17 miliónů ampér  ohřívající plazma. Osmnáct cívek toroidálního pole, každá po 360 t, spolu s magnetickým polem proudu plazmatu tepelně izoluje plazma. Šest cívek poloidálního pole plazma stabilizuje. Nepřepravovatelné cívky č. 2 až 6 (Ø až 24 m) se budou navíjet v Cadarache, v budově s půdorysem 253×46 m a výškou 19 m. Osmnáct korekčních cívek kompenzuje chyby výroby a instalace hlavních cívek. Jako supravodivé materiály slouží slitiny Nb3Sn a NbTi. Celkem 48 cívek tokamaku ITER, to je 9800 tun, spotřebuje 187 km supravodiče. Magnetické pole tokamaku ITER velikosti 10 Tesla je 200 tisíckrát větší než pole Země. Energii 51 GJ magnetického pole má letadlová loď Charles de Gaulle o hmotnosti 38 000 t plující 50 km/hod.

Zdroj: http://www.iter.org/default.aspx

O jaderné fúzi již 3pol psal:
http://www.3pol.cz/cz/rubriky/jaderna-energetika/558-hybridni-jaderny-reaktor
http://www.3pol.cz/cz/rubriky/jaderna-energetika/560-inercialni-elektrostaticke-udrzeni
http://www.3pol.cz/624-wwwatomicarchivecom
http://www.3pol.cz/cz/rubriky/obnovitelne-zdroje/1069-ekologicka-dalnice-a-biomasa
http://www.3pol.cz/cz/rubriky/jaderna-energetika/598-compass-d-novy-smer-vyzkumu-fuze-v-cesku
http://www.3pol.cz/cz/rubriky/jaderna-energetika/599-iter
http://www.www.3pol.cz/cz/rubriky/recenze/432-termojaderna-fuze-pro-kazdeho

Zdroj obrázků: ITER organization

Milan Řípa
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Data z mizejícího ledovce

Bolívijský ledovec Huayna Potosí se každým rokem zmenšuje a ustupuje do svahu. Ve výšce 5 100 metrů nad mořem je vzduch kolem něho řídký.

Druhý pokus na ITERu na výbornou

Transport sektorového modulu #7 vakuové nádoby do montážní jámy tokamaku ITER ve čtvrtek 10. dubna 2025 představoval ne „dva v jednom“, nýbrž „mnoho věcí v jednom“.

Malé a velké reaktory

Mezinárodní agentura pro atomovou energii ve Vídni předpovídá, že do roku 2050 se instalovaná kapacita jaderných reaktorů na světě zdvojnásobí – z 371 GW(e) v roce 2022 na 890 GW(e) do roku 2050.

Malinké želvušky přežijí i ve vesmíru

Droboučký živočich, želvuška (tardigrada) může přežít nehostinný chlad i smrtící ionizující záření ve vesmíru. Všudypřítomná mikroskopická zvířátka, ...

Kvantové počítače budou splněným snem hackerů

Můžeme zastavit hackery, kteří loví vše od vojenských tajemství po bankovní informace? Až se kvantové počítače stanou samozřejmostí, současné kryptografické systémy zastarají.

Nejnovější video

Stellarátory - budoucnost energetiky?

Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.

close
detail