Data z mizejícího ledovce
Bolívijský ledovec Huayna Potosí se každým rokem zmenšuje a ustupuje do svahu. Ve výšce 5 100 metrů nad mořem je vzduch kolem něho řídký.
Z paliv bezprostředně použitelných pro udržení řetězové štěpné reakce v jaderných reaktorech se v přírodě v podstatě vyskytuje pouze izotop uranu 235. Jeho zastoupení v přírodní směsi izotopů uranu je 0,7 %, zbytek tvoří 238U a nepatrně 234U. Při výrobě paliva se uran obohacuje o izotop 235U, pro lehkovodní reaktory (jako je např. Dukovanský a Temelínský) se používá nízkoobohacený (okolo 4 %). Bez obohacení (navýšení množství 235U) by v lehkovodních reaktorech k štěpné reakci nedošlo. V některých typech reaktorů, které jsou chlazeny a moderovány materiály s nízkou schopností pohlcovat neutrony (těžká voda, grafit) lze použít přírodní neobohacený uran.
Při štěpení vznikají z jádra 235U jádra jiných prvků – barya, cesia, xenonu a mnoha dalších. Tím se samozřejmě mění prostředí vhodné pro úspěšné štěpení. Neutrony, které z jádra vyletí mohou buď štěpit dál, nebo zaniknou tím, že je pohltí jiné jádro. Jak 235U ubývá, přibývá jiných jader nevhodných ke štěpení, mění se poměr izotopů uranu ve prospěch 238U, který se pomalými neutrony neštěpí a reakce se postupně zastaví. Tento proces je ekonomický jen do určitého stupně vyhoření. Vzniklé štěpné produkty nelze přitom z paliva odstraňovat – palivové tabletky jsou hermeticky uzavřené v tyčích s povlaky ze zirkoniové slitiny a nerez oceli. Povlaky palivových proutků vydrží tlaky desítek MPa a teploty více než tisíc stupňů.
1000 MW = 30 tun použitého paliva
Jeden tlakovodní reaktor s výkonem 1000 MW zanechá po ročním provozu cca 30 tun použitého paliva, což je objem asi 1,5 m krychlového (uvažte, že uran je velmi těžký prvek, těžší než olovo). Ve středu reaktoru je „vyhoření“ nejvyšší, neboť jsou zde nejvyšší neutronové toky, u stěn reaktoru menší. Při výměně paliva se tedy vyjímá jen palivo od středu; palivo z krajů se stěhuje doprostřed, na kraj se dává čerstvé. Jeden palivový článek „pracuje“ v reaktoru cca 4 roky.
Je-li na každých 1000 kg čerstvého paliva 967 kg 238U a 33 kg 235U, pak palivo vyňaté z reaktoru obsahuje 943 kg 238U, 8 kg 235U, 35 kg štěpných produktů, 8,9 kg různých izotopů plutonia (z tlakovodních reaktorů není toto izotopové složení příliš vhodné na výrobu jaderných zbraní), 4,6 kg 236U, 0,5 kg neptunia 236. Ve vyhořelém palivu už štěpení neprobíhá. Nemůže – řekli jsme si, že vznikly prvky, které neutronům v dalším štěpení zabrání. Probíhá jen radioaktivní rozpad štěpných produktů a transuranů.
Přepracování je stále ještě velmi drahé, aktuální je ADTT
Je však pravda, že obsahuje ještě hodně nespotřebovaného uranu. Některé bohatší státy proto volí cestu přepracování použitého paliva na čerstvé. Je to proces velmi nákladný a při současných nízkých cenách uranu není až tak nutný. Přepracovává např. Francie, Anglie, USA, Japonsko, Rusko.
S nástupem nových generací jaderných reaktorů se rýsuje ještě jiná velmi zajímavá možnost – zpracování použitého paliva v podobě roztavených solí, jeho „rozstřelování“ neutrony v reaktorech typu ADTT, které využívají tzv. tříštivou reakci a umí doslova rozstřílet použité radioaktivní palivo na stabilní nebo krátkožijící prvky. Odstranil by se tak problém s vysoce aktivním jaderným odpadem a získala by se další energie. (O těchto projektech, na jejichž výzkumu se podílí i český Ústav jaderného výzkumu v Řeži, jsme zde psali, např. v http://www.3pol.cz/cz/rubriky/jaderna-energetika/625-proc-je-radioaktivni (prosinec 2001) nebo v http://www.3pol.cz/cz/rubriky/jaderna-energetika/595-kam-s-nim (prosinec 2005) nebo v http://www.3pol.cz/cz/rubriky/jaderna-energetika/558-hybridni-jaderny-reaktor
Bolívijský ledovec Huayna Potosí se každým rokem zmenšuje a ustupuje do svahu. Ve výšce 5 100 metrů nad mořem je vzduch kolem něho řídký.
Transport sektorového modulu #7 vakuové nádoby do montážní jámy tokamaku ITER ve čtvrtek 10. dubna 2025 představoval ne „dva v jednom“, nýbrž „mnoho věcí v jednom“.
Mezinárodní agentura pro atomovou energii ve Vídni předpovídá, že do roku 2050 se instalovaná kapacita jaderných reaktorů na světě zdvojnásobí – z 371 GW(e) v roce 2022 na 890 GW(e) do roku 2050.
Droboučký živočich, želvuška (tardigrada) může přežít nehostinný chlad i smrtící ionizující záření ve vesmíru. Všudypřítomná mikroskopická zvířátka, ...
Můžeme zastavit hackery, kteří loví vše od vojenských tajemství po bankovní informace? Až se kvantové počítače stanou samozřejmostí, současné kryptografické systémy zastarají.
Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.