Jaderná fyzika a energetika

Článků v rubrice: 591

Rusové ve francouzských stopách

Podíl jaderných zdrojů na celkové výrobě elektřiny dosáhne v Rusku do konce století až 80 procent. Na vědecké konferenci Global 2009 konané počátkem letošního září v Paříži to uvedl šéf Kurčatovova ústavu, akademik Nikolaj Ponomarjov-Stěpnoj. Rusko tak předstihne hostitelskou Francii, kde se dnes z jádra vyrábí více než tří čtvrtiny veškerého elektrického proudu.

Fotogalerie (1)
Možné řešení fúzně-štěpného hybridu

Ruský jaderný program sází na rozvoj rychlých reaktorů, které uzavřou současný palivový cyklus. Díky nim se lépe využije potenciál jaderného paliva a o několik řádů omezí objem jaderného odpadu i doba potřebná pro jeho skladování.

Tohoto cíle se podle něj dosáhne ve 20. letech. „Po roce 2030 se součástí jaderné energetiky stanou vysokoteplotní reaktory, jež umožní ve velkém vyrábět vodík jako zdroj energie především pro dopravu,“ zdůraznil podle informační sítě NucNet Ponomarjov-Stěpnoj.

V úvahu přichází i ultravysokoteplotní reaktor chlazený héliem umožňující vysokou účinnost výroby elektřiny i tepla. Tepelným rozkladem vody se může vyrábět vodík, jenž by měl v budoucnu nahradit v dopravě docházející ropu.

Na vývoji materiálu pro výměníky pracující v extrémních podmínkách – odolnost vůči vysokým teplotám kolem 600 0C a naprostá těsnost a dokonalé oddělení sodíku od vodní páry v parním generátoru, neboť každý kontakt s vodou hrozí výbuchem – se podíleli vědci z Ostravy a Brna. Výsledky a dlouhodobé zkušenosti výzkumných týmů vedených profesory Františkem Dubšekem a Oldřichem Matalem z brněnské techniky se ověřovaly na parních generátorech ruských rychlých reaktorů BOR-60 a uplatnily se i při konstrukci bělojarského bloku.


První reaktor spustila Matka Příroda

První přírodní atomové reaktory na uranové palivo byly v provozu před dvěma miliardami let v lokalitě Oklo v dnešním Gabunu. Vysoká koncentrace izotopu U235 a uložení v pórovitých horninách vytvořily příznivé podmínky pro vznik řetězové štěpné reakce. Voda, která po deštích zaplavila ložisko, sloužila jako moderátor podobně jako v dnešních jaderných reaktorech. V Oklu, kde se dnes těží uran pro energetické potřeby, se dosud narazilo na 16 reaktorových oblastí o průměru jeden metr. Výkon každého reaktoru dosahoval 100 kW; jeho energie by stačila pro provoz zhruba dvou set domácností. Každý cyklus spuštění a vyhasnutí trval podle Alexe Meshnika z Washingtonovy univerzity v americkém St. Louis 2,5 hodiny. Přírodní reaktory, jejichž činnost (aniž o jejich existenci věděl) zopakoval Enrico Fermi v roce 1942 v Chicagu, běžely plných 150 tisíc let.


S rychlými reaktory to není lehké

Jedinou komerční elektrárnu s rychlým reaktorem chlazeným sodíkem na světě provozuje dnes Rusko v Bělojarsku na Uralu. První proud dodal 600megawattový blok do sítě v roce 1980. Roční produkce se stabilně blíží čtyřem miliardám kWh a od spuštění vyprodukoval přes 100 miliard kWh.
USA vývoj rychlých reaktorů ukončily v 70. letech, k zastavení společného německo-belgicko-nizozemského projektu Kalkar vedly ve stejné době těsně před spuštěním reaktoru politické důvody. Francie s Japonskem řeší se svými Superphénixem, resp. Mondžu složité technické problémy.
Rychlé reaktory nepotřebují moderátor zpomalující neutrony. Dokáží „spalovat“ plutonium i další dlouhodobé radioaktivní prvky z transuranové řady. Mohou využít výrazně větší množství energie z použitého paliva než současné lehkovodní, a současně zkrátit dobu nezbytnou pro skladování vysoce radioaktivního odpadu.

Nejexotičtěji se jeví reaktor chlazený superkritickou vodou a reaktor s tavenými solemi. Zvláštních vlastností chladicí vody při vysokých teplotách a tlacích se už dnes využívá pro výrazné zvýšení účinnosti uhelných elektráren. O reaktoru na tekuté soli uvažovaly koncem 40. let minulého století USA pro pohon vojenských letounů a do roku 1968 provozovaly malý zkušební reaktor. Tvoří ho grafitový blok s kanály, jimiž volně proudí tekuté uranové soli. Tato technologie je vhodná pro „spalování“ transuranů a plutonia i pro výrobu vodíku, vyřešit však zbývá ještě celou řadu problémů.

(red)
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Data z mizejícího ledovce

Bolívijský ledovec Huayna Potosí se každým rokem zmenšuje a ustupuje do svahu. Ve výšce 5 100 metrů nad mořem je vzduch kolem něho řídký.

Druhý pokus na ITERu na výbornou

Transport sektorového modulu #7 vakuové nádoby do montážní jámy tokamaku ITER ve čtvrtek 10. dubna 2025 představoval ne „dva v jednom“, nýbrž „mnoho věcí v jednom“.

Malé a velké reaktory

Mezinárodní agentura pro atomovou energii ve Vídni předpovídá, že do roku 2050 se instalovaná kapacita jaderných reaktorů na světě zdvojnásobí – z 371 GW(e) v roce 2022 na 890 GW(e) do roku 2050.

Malinké želvušky přežijí i ve vesmíru

Droboučký živočich, želvuška (tardigrada) může přežít nehostinný chlad i smrtící ionizující záření ve vesmíru. Všudypřítomná mikroskopická zvířátka, ...

Kvantové počítače budou splněným snem hackerů

Můžeme zastavit hackery, kteří loví vše od vojenských tajemství po bankovní informace? Až se kvantové počítače stanou samozřejmostí, současné kryptografické systémy zastarají.

Nejnovější video

Stellarátory - budoucnost energetiky?

Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.

close
detail