Jaderná fyzika a energetika

Článků v rubrice: 339

Iontová raketa ušetří palivo při kosmických letech

Koncem října 2008 se podařilo dosáhnout podstatného pokroku při testech nového druhu pohonu kosmických lodí. Jde o iontový pohon, ve kterém nabité částice pracovního média, nejčastěji plynu, urychluje elektromagnetické pole. Zdrojem elektrické energie pro tyto účely bude jaderný reaktor.

Fotogalerie (4)
Záběr ze zkoušek první části projektu VASIMR, kde tryskou unikal ionizovaný argon.

VASIMR - projekt nové technologie pro pohon kosmických raket společnosti Ad Astra Rocket Company
Společnost Ad Astra Rocket Company oznámila, že v první etapě zkoušek části prototypu plasmového pohonu s argonovým palivem bylo dosaženo výkon 30 kW. V další etapě má být prostřednictvím iontového cyklotronu tento výkon zvětšen až na 200 kW. Zkoušky probíhaly ve spolupráci společností ad Astra a Nautel Canada.

Projekt nové technologie pro pohon kosmických raket má označení Variable Specific Impulse Magnetoplasma Rocket (VASIMR). Jeho duchovním otcem je Franklin Chang Diaz, šéf společnosti Ad Astra a zároveň fyzik z prestižní MIT (Massachusetts Institute of Technology). Chang Diaz je také bývalým americkým astronautem, který se v raketoplánu sedmkrát vydal do vesmíru, kde strávil 1600 hodin. Věří v budoucnost nového typu pohonu, protože podle něj by člověk jinak nikdy nemohl vyvíjet nějakou aktivitu za hranicemi blízkého okolí Země.

Společnost Ad Astra jednala o možnosti umístit zkušební modul pohonu VASIMR na mezinárodní vesmírné stanici ISS tak, aby se mohl prověřit přímo ve vesmíru. Zpočátku se zdálo, že NASA bude váhat poskytnout na tyto účely místo ve zbývajících letech raketoplánů k ISS ještě před jejich definitivním ukončením. Nicméně 8. prosince 2008 byla příslušná dohoda mezi ad Astra a NASA uzavřena. Objevily se také spekulace, že by se VASIMR mohl dostat do vesmíru na některé z nových komerčních raket, jejichž lety se připravují.

Vyšší výkon zkrátí dobu letu
Iontové motory nemají dostatečný výkon, aby vynesly raketu s astronauty na oběžnou dráhu, ale své přednosti plně uplatní na dlouhých trasách mezi planetami sluneční soustavy. V okolí Země a Měsíce jim mohou stačit jako zdroje energie sluneční panely, ale už na cestách k Marsu budou výhodnější s dvojicí malých štěpných jaderných reaktorů, které se nyní používají k pohonu ponorek.
Chang Diaz spočítal, že kosmická loď s užitečným zatížením 22 tun vybavená jeho motorem urazí dráhu ze Země na Mars za pouhých 39 dní. V první polovině cesty může neustále zrychlovat, ve druhé brzdit. Zrychlení tak umožní vytvořit pro astronauty vítanou náhradu gravitace. Ve srovnání s dosavadními raketami s chemickým pohonem je iontový motor velmi úsporný, zásoby paliva mohou být až desetkrát menší. Malá hmotnost a vysoký výkon ho předurčují i k letům za hranice sluneční soustavy.

Využití jaderné energie k pohonu kosmických lodí není novinkou. V uplynulých desetiletích byl jaderný pohon častým námětem projektů a studií, které však byly opuštěny - nejčastěji pro nedostatek finančních prostředků. Byl to osud například i amerického projektu NERVA, kde reaktor ohříval vodík a ohřátý plyn unikající tryskou poháněl třetí stupeň kosmické rakety. V projektu nazvaném Orion měla kosmickou loď pohánět rázová vlna vyvolaná sérií drobných jaderných výbuchů, která naráží na odraznou desku na konci lodi.
Jaderný pohon měla mít také sonda JIMO směřující k měsícům Jupiteru. Šlo o kombinaci jaderného reaktoru a iontového motoru. Sonda měla dopravit rozsáhlou výzkumnou aparaturu k těmto velmi zajímavým objektům v naší sluneční soustavě, které jsou totiž pokryty vrstvou ledu, pod nímž může být voda. S vodou se obvykle pojí možnost života. Z úsporných důvodů však americká NASA od projektu odstoupila.

Od korekčních motorků k pohonům
Malé iontové motory se používaly pro korekční účely v mnoha kosmických sondách již v předchozích desetiletích. K urychlení iontů sloužilo elektrostatické pole. Teprve na konci 90. let byly použity i pro pohony, poprvé na kosmické sondě Deep Space 1, vypuštěné v říjnu 1998 pro ověřování nových technologií. Sonda koncem července 1999 uskutečnila průlet kolem planetky Braille a v září 2001 se přiblížila ke kometě Borelly. Motor používal k ionizaci plynného xenonu dutou katodu, z níž se emitovaly elektrony. Oddělený svazek elektronů byl pak za motorem vstřikován do proudu iontů, aby vytvářel neutrální proud plazmatu. Při příkonu 2,3 kW bylo dosaženo tahu 92 mN a výtokové rychlosti iontů 28 km/s. Tah takového motorku je tedy nepatrný, odpovídá váze jediné čtvrtky papíru.
Konstrukční uspořádání nových typů iontových pohonů se v poslední době změnilo. U pohonu VASIMR, který nyní testuje společnost Ad Astra, bylo elektrostatické pole k urychlení iontů nahrazeno elektromagnetický systémem. Ionizované plazma se pomocí elektromagnetického pole radiových frekvencí ohřeje a urychlí, magnetická pole namíří plazma do správného směru. Hlavní výhody oproti klasickému iontovému motoru je, že nepotřebují elektrody, které by byly plazmatem korodovány, a také že mohou měnit tah v širokém rozmezí.

V Třípólu najdete článek o VASIMR na: http://www.3pol.cz/index.asp?clanek&view&136


Jak pracuje iontový motor?
  • Do nabíjecí komory se vstřikuje pracovní látka (např. vodík, xenon atd.).
  • Pomocí elektrické energie z jaderného nebo solárního zdroje se v látce odštěpí elektrony (například prostřednictvím vysokofrekvenčního elektromagnetického záření), z atomů se stávají ionty.
  • Ionty se pomocí elektrostatického nebo elektromagnetického pole urychlují na 40 až 60 km/s.
  • Když ionty opouštějí trysku, jsou ionty elektricky neutralizovány přidáním elektronů, aby se kosmická sonda elektricky nenabíjela.

Bedřich Choděra
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Naše první slova

Původ řeči je jednou z největších záhad lidstva. „Na začátku bylo slovo...“ praví Bible. Ale jaké? Minimálně od biblických časů jsme se snažili rozluštit původ lidské řeči. Je to konec konců jedna z charakteristik, která nás odlišuje od jiných živočichů.

Černá smrt gumy a jak jí čelit

Guma je jedním z neopěvovaných velkých hrdinů průmyslové revoluce. Kromě jejích obvyklých aplikací, jako jsou pneumatiky, kondomy, elastické spodní prádlo, apod., představuje základní složku asi ve 40 000 výrobcích, včetně absorbérů nárazu, hadic, lékařských nástrojů, těsnění, atd.

Z historie i současnosti vynálezů a jejich ochrany

Vynálezy a objevy často přicházejí na svět klikatými cestičkami. Jednou to vypadá, jako by se na ně čekalo tak netrpělivě, že se zrodí hned v několika hlavách v různých koutech světa, jindy je náhodou nebo omylem objeveno něco, s čím si nikdo neví rady.

Jak vyčíslit ekonomické přínosy jádra? A co na to evropský jaderný průmysl?

Společnost Deloitte vypracovala pro Euratom studii o přínosech jaderné energetiky v roce 2019 a 2050. V současné době je v provozu ve 14 zemích EU 126 komerčních reaktorů o výkonu 118 GWe. Do roku 2050 by měl jejich výkon stoupnout na 150 GWe, budou se ale muset snížit investiční náklady.

Astronauti se pořád ptali: Jak se daří myškám?

Myši, švábi, japonské křepelky, ryby, škeble, rostliny.... ti všichni měli možnost ochutnat Měsíc! Po návratu Apolla 11, od jehož mise letos uplynulo 50 let, putovalo množství vzácných vzorků měsíční horniny do laboratoří.

Nejnovější video

Bez jaderné energie se ve vesmíru daleko nedostaneme

Krátké výstižné video z dílny Mezinárodní agentury pro atomovou energii ve Vídni ukazuje využití jaderné energie a jaderných technologií při výzkumu vesmíru. Ne každý ví, že jádro pohání vesmírné sondy už po desetiletí. Zopakujme si to. (Film je v angličtině.)

close
detail