Medicína a přírodověda

Článků v rubrice: 323

Co uvádí vodní houby do pohybu

Vodní houby nemají neurony ani svaly, přesto se pohybují.  Jak to dělají a co nám to říká o vývoji krevních cév u vyšších živočichů, odhalili vědci z Evropské mikrobiologické laboratoře (EMBL) v Heidelbergu.

Fotogalerie (2)
Sladkovodní houba Spongilla lacustris (zdroj Wikimedia Commons, 3.0)

Věděli jste, že se houby mohou pohybovat? I když nejsou zrovna zastánci podvodní akrobacie, vykazují koordinované pohyby – přestože nemají svaly ani neurony. Arendt Group EMBL Heidelberg ve spolupráci se Savitski Team a Prevedel Group, spolu se spolupracovníky z University v Heidelbergu a Yaleovy University odhalili překvapivá fakta, která vrhají světlo nejen na pohyb houby, ale také na vývoj krevních cév u lidí a u zvířat. Pomocí pokročilých molekulárních technik zjistili, že prastarý „relaxačně-zánětlivý“ molekulární mechanismus (Ancient ‘relaxant-inflammatory’ mechanism) nám pomáhá lépe pochopit pohyb hub. Studie byla publikována v časopise Current Biology. Nový výzkum ukazuje, že na rozdíl od dřívějších předpokladů je pohyb houby řízen spíše relaxací než kontrakcí, a zdůrazňuje evoluční spojení s cévním systémem obratlovců.

Vodní kanálky jsou vývojovým předchůdcem cév

Pohyb hub závisí na systému hustě větvených vodních kanálů uvnitř jejich těla. Když se některé z těchto kanálů uzavřou a voda se vypustí, houba pohne celým tělem. Dříve se věřilo, že tento pohyb způsobují kontrakce buněk vystýlajících kanály. Podle nových poznatků však tento pohyb souvisí spíše s relaxací a deflací (snížením objemu nebo tlaku) vodních kanálů, podobně jako při vyfukování balónu. Úplně stejná reakce reguluje kontrakci našich krevních cév, což je důležitý determinant krevního tlaku.

Vědci použili pokročilou mikroskopii, farmakologii, jednobuněčné sekvencováni a několik nových proteomických(*) technik k prozkoumání molekulárního a buněčného mechanismu deflace houby. Zjistili, že houbu pohání relaxace stresových vláken uvnitř buněk kanálů. Relaxaci spouští evolučně starý mechanismus podobný zánětu, který také reguluje kontrakci krevních cév u lidí a dalších obratlovců a je důležitým faktorem ovlivňujícím krevní tlak. Objev dokazuje, že reakce jako zánět a relaxace cév se neomezují pouze na nás, ale vyskytují se i u našich vzdálených příbuzných – mořských hub.

Když jsem se dozvěděl, že houby se skutečně pohybují a že molekulární a buněčný základ pohybu houby byl dosud z velké části neznámý, zaujalo mě to,“ řekl Fabian Ruperti, doktorand v Arendt Group a první autor studie. „Jako biochemik jsem byl nadšený, že jsem se s touto otázkou vypořádal kombinací nových nástrojů, jako je funkční proteomika. Tyto procesy jsou relevantní nejen pro nás, ale také pro mnoho zvířat. To znamená, že strukturu a funkci těchto systémů můžeme pochopit pouze v kontextu evoluce.“

Podrobnosti včetně videomateriálu najdete na: https://www.embl.org/news/science/ancient-relaxant-immuniming-mechanism-get-sponges-moving/

Zdroj: Tisková zpráva EMBL a článek Ruperti F. a kol. Molekulární profilování deflace houby odhaluje starou relaxačně-zánětlivou reakci. Aktuální biologie, publikovaná 4. ledna 2024. DOI: 10.1016/j.cub.2023.12.021, https://www.cell.com/current-biology/fulltext/S0960-9822(23)01676-7

*Pozn. red.: Proteomická technika se zabývá studiem celkového proteinového obsahu v buňkách, tkáních nebo organismech. Mezi hlavní proteomické techniky patří:

  1. Elektroforéza: Metoda, která odděluje proteiny na základě jejich velikosti a náboje. Může být dvoudimenzionální (2D) nebo jednodimenzionální (1D).
  2. Hmotnostní spektrometrie (MS): Analyzuje hmotnost proteinů a peptidů. Pomocí MS lze identifikovat proteiny a kvantifikovat jejich přítomnost.
  3. Izotopové značení: Používá se k porovnání proteinů v různých vzorcích. Například metoda iTRAQ umožňuje kvantifikaci proteinů v různých biologických vzorcích.
  4. Gelová chromatografie: Odděluje proteiny na základě jejich afinitních vlastností ke gelovým kolonám.
  5. Proteinová mikroskopie: Vizualizuje lokalizaci proteinů v buňkách pomocí fluorescenčních sond.
  6. Proteinová interakční analýza: Studuje interakce mezi proteiny, což pomáhá pochopit jejich funkci.
  7. Proteomická analýza: Kombinace různých technik pro komplexní studium proteinů.
(red)
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Pětidenní cesta pro nejdelší a nejširší komponentu ITER

Rychlostí chůze trvá dosažení lokality ITER z Berre-l’Étang, vzdáleného 70 kilometrů, přibližně 16 hodin. Pokud ale plánujete cestovat pouze mezi 22:30 a časnými ranními hodinami následujícího ...

Kazachstán plánuje výstavbu jaderné elektrárny v lokalitě Balchaš

Kazachstán provozoval 27 let jaderný reaktor BN-350 (první rychlý reaktor světa, chlazený sodíkem) ve městě Ševčenko (za doby Sovětského Svazu), dnes Aktau na břehu Kaspického moře.

Unikátní český patent na využití tepla z odpadní vody

Spolu s teplou odpadní vodou odchází z domácnosti až 60 % spotřebované energie. Česká společnost Akire vyvinula unikátní řešení, jak s tímto potenciálem dále efektivně pracovat.

Od Londýna po Ósaku: Příběhy EXPO pavilonů, které našly nový domov

Světové výstavy EXPO jsou od počátků spjaty s odvážnými architektonickými vizemi a ikonickými stavbami. K nejznámějším patří Eiffelova věž v Paříži či Atomium v Bruselu.

Pryč s kolonami, rychlejší průjezd i méně nehod

Zatímco dříve byla vrcholem chytrého řízení dopravy ve městech „zelená vlna“ na semaforech, umožňují dnešní technologie propojit městské kamery, senzory, mobilní data i samotná auta.

Nejnovější video

Stellarátory - budoucnost energetiky?

Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.

close
detail