Návody na pokusy

Článků v rubrice: 70

Jak se „živí“ rostliny

Před časem jsme si v tisku mohli přečíst zprávu o objevu dosud neznámého poznámkového bloku I. Newtona z let 1661-1665, kdy tento „otec“ klasické fyziky studoval na univerzitě v Oxfordu. Mezi různými filozofickými úvahami a záznamy z oblasti matematiky a fyziky věnoval mladý Newton pár řádků i jednomu nevyřešenému botanickému problému. Pokusil se najít odpověď na otázku, jakým způsobem se dostává voda z kořenů rostlin až do nejvyšších částí jejich stonků nebo kmenů. Došel k závěru, že stoupání vody rostlinou je způsobeno slunečním zářením, které zahřívá listy. Částice vody se z nich vypařují do ovzduší a na jejich místo je „nasávána“ voda z kořenů (obr. 8).

Fotogalerie (7)
Pekingské zelí je vhodné na pokus, protože má silnou dobře viditelnou žilnatinu (foto autor)

Ukázalo se však, že mechanismus vedení vody v rostlinách je podstatně složitější a podařilo se ho objasnit teprve koncem 19. století. Hlavní roli v něm hrají dva fyzikálně chemické děje – kapilarita a osmóza. Kapilarita je projevem povrchového napětí kapaliny a základní fakta o ní jsme si připomněli v článku Dva pokusy s kapilaritou (http://www.3pol.cz/cz/rubriky/navody-na-pokusy/1665-dva-pokusy-s-kapilaritou), zbývá tedy zmínit se o osmóze. V učebnici chemie (nebo ve Wikipedii) se o ní dočteme: „Osmóza je zvláštní druh difuze, tj. samovolného pohybu, prolínání a rozptylování mikroskopických částic kapaliny nebo plynu. Je to děj, při kterém prochází rozpouštědlo (nejčastěji voda) přes polopropustnou membránu z prostoru s méně koncentrovaným roztokem do prostoru s více koncentrovaným roztokem“. Jinými slovy – voda je přes polopropustnou membránu, např. buněčnou stěnu, nasávána ze zředěnějšího do koncentrovanějšího roztoku.

Z vlastní zkušenosti dobře víte, že rostliny ke svému životu nutně potřebují vodu, bez ní beznadějně uvadají a hynou. Voda rozpouští živiny a rozvádí je do celého rostlinného těla. Je také nepostradatelná při fotosyntéze a dýchání rostlin. Chrání rostlinu před náhlými tepelnými změnami a ovlivňuje tak její termoregulaci. Při vedení vody od kořenů až k listům se uplatňuje několik dějů – osmóza a difuze přes buněčné stěny, kořenový vztlak, kapilární vzlínání v úzkých trubicích cévních svazků a transpirace neboli odpařování vody z listů.

K demonstraci poslouží zelí

Pro náš botanický výzkum použijeme hlávku pekingského zelí. Nejvhodnější jsou vnitřní listy, které jsou téměř bílé, a proto se na nich zřetelně projeví i malé barevné změny. První a druhý list ponoříme do vody, výrazně obarvené potravinářským barvivem. Třetí list, ponořený do čisté vody, bude „kontrolní“ (obr. 1, obr. 2).

První náznaky pronikání barevné vody do listů se projeví už po pár desítkách minut a s postupujícím časem bude barevné žilkování stále intenzivnější. Během 24 hodin už budou zbarveny nejen silné cévy, ale barevný nádech získá celý list, protože voda už pronikla i do nejužších vlásečnic (obr. 3., obr. 4, obr. 5).

Doslova „na vlastní oči“ (vyzbrojené silnou lupou) se přesvědčíme o způsobu vedení vody rostlinnými cévami tak, že zbarvený list přeřízneme ostrým nožem (obr. 6).

Kromě botanického zkoumání můžeme využít kapilaritu a osmózu i pro barevné „vylepšení“ květů. Stačí, když místo čisté vody nalijeme do vázy vodu obarvenou a ponoříme do ní stonek vhodné květiny. My jsme se úspěšně pokusili zbarvit modrou vodou původně žluté květy astry (obr. 7). Na internetu však můžete najít i návody na „vyšlechtění“ několikabarevných – původně bílých – květů. Trik spočívá v tom, že spodní část stonku se rozdělí na 2 až 4 části a každá z nich se ponoří do jinak obarvené vody.

Web

Obrázek Newtonova rukopisu: news.sciencemag.org/physics/2015/02/gravity-defying-trees-explained-newton

Jaroslav Kusala
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Naše první slova

Původ řeči je jednou z největších záhad lidstva. „Na začátku bylo slovo...“ praví Bible. Ale jaké? Minimálně od biblických časů jsme se snažili rozluštit původ lidské řeči. Je to konec konců jedna z charakteristik, která nás odlišuje od jiných živočichů.

Černá smrt gumy a jak jí čelit

Guma je jedním z neopěvovaných velkých hrdinů průmyslové revoluce. Kromě jejích obvyklých aplikací, jako jsou pneumatiky, kondomy, elastické spodní prádlo, apod., představuje základní složku asi ve 40 000 výrobcích, včetně absorbérů nárazu, hadic, lékařských nástrojů, těsnění, atd.

Z historie i současnosti vynálezů a jejich ochrany

Vynálezy a objevy často přicházejí na svět klikatými cestičkami. Jednou to vypadá, jako by se na ně čekalo tak netrpělivě, že se zrodí hned v několika hlavách v různých koutech světa, jindy je náhodou nebo omylem objeveno něco, s čím si nikdo neví rady.

Jak vyčíslit ekonomické přínosy jádra? A co na to evropský jaderný průmysl?

Společnost Deloitte vypracovala pro Euratom studii o přínosech jaderné energetiky v roce 2019 a 2050. V současné době je v provozu ve 14 zemích EU 126 komerčních reaktorů o výkonu 118 GWe. Do roku 2050 by měl jejich výkon stoupnout na 150 GWe, budou se ale muset snížit investiční náklady.

Astronauti se pořád ptali: Jak se daří myškám?

Myši, švábi, japonské křepelky, ryby, škeble, rostliny.... ti všichni měli možnost ochutnat Měsíc! Po návratu Apolla 11, od jehož mise letos uplynulo 50 let, putovalo množství vzácných vzorků měsíční horniny do laboratoří.

Nejnovější video

Bez jaderné energie se ve vesmíru daleko nedostaneme

Krátké výstižné video z dílny Mezinárodní agentury pro atomovou energii ve Vídni ukazuje využití jaderné energie a jaderných technologií při výzkumu vesmíru. Ne každý ví, že jádro pohání vesmírné sondy už po desetiletí. Zopakujme si to. (Film je v angličtině.)

close
detail