Návody na pokusy

Článků v rubrice: 70

Měříme rychlost větru

Větrné elektrárny vyrábějí elektrickou energii přeměnou z energie proudícího vzduchu. Stavba těchto typů elektráren má smysl jen tam, kde vane vítr často a má dostatečnou rychlost. Tento návod na výrobu pokusného modelu nás zavede do světa meteorologie. Rychlost větru totiž potřebujeme znát nejen při hledání místa pro větrnou elektrárnu, ale i při předpovídání počasí.

Fotogalerie (2)
Obr. 1

Anemometr


Co budeme potřebovat
  • modelářské lišty o průřezu 20 mm × 5 mm
  • čtyři plastové kelímky (např. od jogurtu)
  • hřebík, 2 korálky a podložku
  • dřevěnou tyčku délky min. 20 cm
  • samolepicí pásku, plastelínu

Jak na to
Základem konstrukce je kříž sestavený a slepený ze dvou navzájem kolmých modelářských lišt. Uprostřed vyvrtáme otvor pro hřebík – osu. Na hřebík navlékneme korálek, nasuneme laťkový kříž, navlékneme druhý korálek a podložku. Hřebík s nasazeným křížem pak zatlučeme do tyčky, sloužící jako držák anemometru. Korálky a podložka zajišťují snadné otáčení kříže okolo osy. Pak na konec každého ramene upevníme samolepicí páskou plastový kelímek a celou sestavu vyvážíme nalepenými kousky plastelíny nebo posunováním kelímků (obr. 1).

Při měření rychlosti větru zvedneme rukojeť s větrným křížem nad hlavu a podle rychlosti jeho otáčení usuzujeme na rychlost větru.

Větrná tabule


Co budeme potřebovat
  • prkénko na podstavec
  • dva odřezky dřevěných lišt
  • drát na osu
  • hliníkový plech nebo plastovou destičku
  • karton
  • hřebíky a kladívko

Jak na to
Větrná tabule je jiný typ anemometru. Její konstrukce je rovněž snadná a navíc ji můžeme opatřit jednoduchou stupnicí. Připravíme si dřevěné prkénko jako podstavec a k protilehlým bočním stěnám svisle upevníme lišty s otvory pro zasunutí osy. Do otvorů vložíme osu z ocelového nebo mosazného drátu, ve které jsou po stranách vytvořeny malé prohlubně. Obdélník tenkého hliníkového plechu nebo plastovou destičku zavěsíme dvěma malými kroužky na osu a k jednomu svislému držáku přilepíme kartonový čtverec se stupnici (obr. 2).

Při měření namíříme přístroj proti větru tak, aby se vítr do zavěšené destičky opíral plnou silou. Čím silnější je vítr, tím větší je výchylka destičky ze svislého směru. Velikost výchylky odečteme na stupnici, kterou můžeme zkusmo ocejchovat přímo v m/s nebo v km/h podle níže uvedené tabulky.

Meteorologové používají anemometr, pracující na stejném principu jako náš model.
Na kříži jsou tři nebo čtyři lehké hliníkové misky. Jejich otáčení se přenáší na malý generátorek nebo elektronický čítač otáček. Naměřené údaje o rychlosti a směru větru se zaznamenávají a zpracovávají počítačem. Rychlost větru se udává buď v metrech za sekundu (případně v km/h), nebo ji charakterizuje tzv. Beaufortova stupnice.

Zdroj: RNDr. Jaroslav Kusala, Hrátky s obnovitelnými zdroji, součást vzdělávacího programu ČEZ, a. s., Svět energie. Publikaci můžete získat na:
http://www.cez.cz/cs/vyzkum-a-vzdelavani/pro-studenty/materialy-ke-studiu/tiskoviny.html

Nabídku vzdělávacího programu najdete na: http://www.cez.cz/vzdelavaciprogram

Beaufortova stupnice

>Stupeň >Rychlost (m/s)>Rychlost (km/h)>Označeníúčinky
0< 0,2< 1bezvětříkouř vystupuje přímo vzhůru
10,3–1,41–5váneksotva pozorovatelný pohyb vzduchu
21,7–31 6–11slabý vítrpohybuje lehkým praporkem
33,3–5,312–19mírný vítrpohybuje praporem a listím, čeří hladinu stojaté vody
45,6–7,820–28dosti čerstvý vítr pohybuje slabšími větvemi stromů
58,1–10,829–39čerstvý vítrpohybuje silnějšími větvemi, na stojaté vodě vznikají vlny
611,1–13,640–49silný vítrpohybuje slabšími stromy
713,9–16,950–61prudký vítrpohybuje stromy střední tloušťky, vlny na stojaté vodě mají zpěněné vrcholy
817,2–20,662–74bouřlivý vítrpohybuje silnějšími stromy a ulamuje slabší větve, ztěžuje chůzi proti větru
920,8–24,475–88vichřicepůsobí menši škody na stavbách
1024,7–28,389–102silná vichřicevyvrací stromy
1128,6–32,5103–117mohutná vichřicerozsáhlé škody na lesních porostech a budovách
12přes 32,5> 117orkánničivé účinky, strhává střechy, shazuje komíny

Jaroslav Kusala
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Rizika IT dovednosti teenagerů

Vývoj počítačových technologií změnil nároky pracovního trhu i sebevědomí pracovníků. Podle obecného mínění má mladá generace ve znalostech počítačových technologií před tou starší náskok, a tedy i výhodu uplatnění v mnoha oborech.

Klimatické změny působí problémy světové energetice

Globální oteplování, které se mimo jiné projevuje také dlouhými obdobími bez deště, začíná působit problémy i ve světové energetice. Nejzranitelnější jsou podle očekávání vodní elektrárny, ale zkušenosti z posledních několika let ukazují, ...

Polsko se připravuje na jadernou energetiku

Aby Polsko uspokojilo rostoucí poptávku po energii a zároveň se snažilo o plnění cílů v oblasti ochrany klimatu, musí postavit nové zdroje energie. To otevírá příležitost zavést jadernou energii, říká ministr energetiky Kryštof Tchórzewski.

Tokamak JET V ROCE 2020

Tokamak (původem ruský) je v současnosti jediným pokusným zařízením schopným vyvolat termojadernou reakci na Zemi. Jediný tokamak schopný termojadernou reakcí uvolnit významné množství fúzního výkonu (a největší současný tokamak v provozu) je evropský tokamak JET v anglickém Culhamu.

Říše hmot

V pátém, posledním dílu seriálu o tom, jak se psalo a učilo o fyzice a chemii před rokem 1850, se podíváme na světlo. Laskavostí našeho přispěvatele, váženého pana inženýra Jana Tůmy, jsme získali cenný zdroj, knížku Karla Amerlinga Orbis Pictus čili ...

Nejnovější video

Bez jaderné energie se ve vesmíru daleko nedostaneme

Krátké výstižné video z dílny Mezinárodní agentury pro atomovou energii ve Vídni ukazuje využití jaderné energie a jaderných technologií při výzkumu vesmíru. Ne každý ví, že jádro pohání vesmírné sondy už po desetiletí. Zopakujme si to. (Film je v angličtině.)

close
detail