Obnovitelné zdroje

Článků v rubrice: 192

Plným sluncem vpřed!

Naše mateřská hvězda vyzařuje obrovské množství energie. Celkový vyzařovaný výkon Slunce je 3,73x1020 MW. Ač nás od ní dělí průměrně 150 milionů kilometrů, ovlivňuje život na Zemi stejně jako další procesy doslova na každém kroku. Ostatně, život by bez tohoto přísunu energie ani nemohl vzniknout.

Fotogalerie (1)
Ilustrační foto

Že je sluneční energii možné přeměnit v jinou formu energie, např. elektrickou nebo tepelnou, je všeobecně známým faktem. Málo známým faktem je ale skutečnost, že sluneční energii lze měnit přímo v energii kinetickou – tedy pohybovou. Není to ale vůbec jednoduché. A zde na Zemi je to dokonce nemožné, protože vlivy gravitace, atmosféry nebo tepelných změn tuto možnost spolehlivě eliminují.

Proto se musíme vydat někam, kde tyto vlivy působí jen zanedbatelně. Do vesmíru.

Už dlouho jsou rozpracovávány projekty tzv. slunečních plachetnic – družic, které pro zrychlení nebo zpomalení využívají právě slunečního záření. Tedy nikoliv „klasických“ chemických nebo fyzikálních motorů využívajících spalování paliva a okysličovadla nebo použití stlačeného plynu, ale čistě a jen síly slunečního záření. Ta je sice velmi malá, na druhé straně působí neustále a je k dispozici v neomezeném množství. Na tomto místě vyvrátíme jeden mýtus, který se často traduje. Mnohdy se uvádí, že sluneční plachetnice „pohání“ sluneční vítr – nepřetržitý proud částic, který naše mateřská hvězda vyvrhuje do okolí. To ale není pravda – skutečný tlak vytváří samotné záření, vliv proudu částic je zhruba tisíckrát menší než vliv vlastního záření. A pokud uvážíme, že tlak záření má hodnotu 4,43 × 10-6 Pa, je pochopitelné, že proud částic má vliv opravdu zanedbatelný.

Ovšem i využití tlaku záření je relativně obtížné. Vzhledem k jeho nízkým hodnotám potřebujeme velkou plochu o zanedbatelné hmotnosti, na kterou by záření mohlo působit prakticky neomezenou dobu. Tedy co nejtenčí a především nejlehčí plachtu.

Jen pro představu: na plachtu čtvercového tvaru 30 krát 30 metrů o ploše 900 metrů čtverečních působí síla 3,95 mN! Hmotnost takovéto plachty by přitom neměla překročit 100 kilogramů – do ní mu- 04 ¤ÍJEN 2004 T¤ETÍ PÓL | WWW.TRETIPOL.CZ PLN¯M SLUNCEM VP¤ED! N 05 síme započítat komunikační aparaturu, orientační systém, výztužné prvky, zdroj energie a vlastní užitečný náklad - vědecké přístroje. Vytvoření funkční sluneční plachetnice je tedy vším možným, jen ne snadným úkolem.

Narážíme při něm také na několik technických problémů. Jak vyrobit dostatečně tenkou a lehkou „plachtu“ (fólii)? Jak ji dopravit na oběžnou dráhu a jak ji zde rozevřít? Jak zajistit její konstrukci, aby se postupem času nebortila? Jak s plachtou vhodně a účinně manévrovat, aby se pohybovala ve stanoveném směru? Atd. Možná, že některé otázky na první pohled připadají jednoduché, ale ve skutečnosti tomu tak není. Zásadním problémem je totiž nutnost udržet velmi nízkou hmotnost zařízení. Jinak by nebylo možné vliv záření vůbec využít, převládly by jiné síly, např. odpor nejvyšších vrstev atmosféry.

Přestože v historii kosmonautiky už bylo zveřejněno několik plánů na výrobu slunečních plachetnic, zatím se žádný projekt nepodařilo dostat do stadia realizace. To ale neznamená, že by sluneční plachty nebyly ve vesmíru vyzkoušeny a použity. Stalo se tak třeba na amerických družicích GOES-8 až -11 nebo na některých indických satelitech Insat. Tyto totiž byly vybaveny jen jedním panelem slunečních baterií a aby nedocházelo k nechtěné rotaci tělesa spojené s nadměrnou spotřebou pohonných látek, byly tyto družice vybaveny naproti slunečnímu panelu ještě plachtou, která vliv slunečního záření kompenzovala.

Možná už v průběhu letošního roku dojde k vypuštění první skutečné sluneční plachetnice, kterou sponzoruje americká Planetary Society. Vývoj celého ze soukromých zdrojů financovaného projektu Cosmos-1 (na snímku zatím jen v představách malíře) lze sledovat na stránkách www.planetary.org (Solar Sailing).

Foto Planetary Society

Tomáš Přibyl
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Sloupový nástroj aneb 600 tun ve středu tokamakové jámy ITER

Impozantní nástroj tvořený rovným kmenem a větvemi z něho vyrůstajícími, neboli 600tunovým sloupem s devíti radiálními rameny, vyroste příští rok ve středu jámy tokamaku ITER. Během montáže v jámě bude podepírat, vyrovnávat a stabilizovat podsestavy vakuové nádoby, jakmile budou spojeny a svařeny.

Československo – země radia

Letos si připomínáme 100 let od založení Státního ústavu radiologického a 70 let od vzniku Ústavu pro výzkum, výrobu a využití radioizotopů.

Centrální solenoid ITER

Který magnet tokamaku je nejdůležitější? Bez magnetů toroidálního pole vám plazma uteče na stěny komory, bez magnetů pole poloidálního nedosáhnete potřebného tvaru plazmového provazce, bez magnetů centrálního solenoidu nebude žádné plazma…Stop!

Dolivo - Dobrovolskij a počátky přenosu elektrické energie

Před sto lety zemřel dnes již málo známý ruský fyzik, elektrotechnik a vynálezce M. O. Dolivo-Dobrovolskij. Jako jeden z prvních fyziků a techniků teoreticky i prakticky odhalil možnosti využití trojfázového střídavého proudu.

Výletů do vesmíru se nebojíme, ale auto si raději budeme řídit sami

Mladí by chtěli profitovat z vědeckého pokroku okamžitě, starší generace se dívá spíše na jeho pozitivní vliv do budoucna, vyplývá z průzkumu 3M o postojích veřejnosti k vědě (State of Science Index).

Nejnovější video

Bez jaderné energie se ve vesmíru daleko nedostaneme

Krátké výstižné video z dílny Mezinárodní agentury pro atomovou energii ve Vídni ukazuje využití jaderné energie a jaderných technologií při výzkumu vesmíru. Ne každý ví, že jádro pohání vesmírné sondy už po desetiletí. Zopakujme si to. (Film je v angličtině.)

close
detail