Vypouštění radioaktivní vody z Fukušimy do moře
Pracovní skupina Mezinárodní agentury pro atomovou energii (MAAE), která přezkoumává japonskou politiku vypouštění upravené vody z jaderné elektrárny Fukušima Dai-iči ...
Svět, ve kterém žijeme, někdy musel začít a proto hledáme počátky sluneční soustavy, abychom znali své místo.
Představy o vzniku sluneční soustavy, především planet pozemského typu (tedy Merkuru, Venuše, Země a Marsu), jsou poměrně starého data a pocházejí z 18. a 19. století. Jsou založeny na Kantově – Laplaceově hypotéze. Dnes se jí říká trochu jinak: Safronovův – Wetherillův model. Podle této představy, vznikaly zmíněné planety shlukováním již pevných součástek. O tom, kde se vzaly pevné součástky, není pochyb. Vznikaly kondensací plynu z horkého oblaku, asi tak jako vznikne jinovatka z vodní páry ve vzduchu. Horký plyn byl pozůstatkem výbuchu supernovy. Malé, ale pevné součástky se slepovaly do větších tělísek, řekněme do rozměru kamenů a ty pak do těles, kterým říkáme planetesimály. Z hlediska vesmírného či planetárního plyn chladl rychle, jen desítky či stovky tisíc let, z teplot kolem 2000 °C do teplot pod bodem mrazu.
Shlukování = akrece
Shlukující se součástky a vzniklá tělíska se pohybují velkými rychlostmi (desítky kilometrů za sekundu) a mají tedy značnou kinetickou energii. Větší tělesa už mají vlastní přitažlivost, a tak na sebe nabalují součástky menší. Veškerá energie součástek, ale i malých planetek se v tomto procesu mění (srážkami) na teplo, a je zřejmé, že se tvořící planety ohřívají. Ohřívání vede k tavení tohoto materiálu, a proto se od sebe oddělují součástky kovové a křemičitanové. Kovy jsou v roztaveném stavu, mají vyšší měrnou hmotnost (specifickou váhu), a proto klesají a posléze tvoří jádra planet. Zbylé křemičitany pak dávají vznik plášťi a kůře planet.
Rozpadlá planeta?
Donedávna se astronomové a geologové domnívali, že slupkovitou stavbu mají jenom větší planety, ve kterých se dostatečné množství tepla nahromadilo. A protože z pásu planetek pocházejí i železné meteority (a planety mají železná jádra) domnívali se badatelé, že v pásu planetek mezi Marsem a Jupiterem byla v minulosti jedna taková planeta pozemského typu, leč rozpadlá. V této hypotéze pak železo-kamenné meteority představují plášť, a meteority, které mají složení podobné pozemským čedičům zřetelně vzniklým na povrchu planety, kůru. Představa to byla přijatelná, ale jen do doby, než se ukázalo, že v pásu asteroidů bylo mnoho těles, která měla jádro. Jednotlivé železné meteority se od sebe výrazně liší a nelze je připsat jednomu jádru jediné planety.
A teď se dostáváme k jednomu zásadnímu problému – tím je teplo. Ani rychlé shlukování (akrece) malých těles nebylo dostatečné na to, aby způsobilo, že se hmota ohřála až k bodu tavení křemičitanů a kovů, řekněme na teploty kolem 1400 °C. Musel tu být ještě jiný zdroj tepla než teplo vznikající přeměnou kinetické energie.
(Pokud si neumíte tuto přeměnu představit, vezměte si kladivo, rychle bušte do kovadliny a pak si sáhněte na kladivo. Bude teplé.) Ale kde se bere to dodatečné teplo? Lidé si tím lámali hlavu dlouhou dobu.
Odpoví nám izotopy
Že se dnes odpověď zdá jednoduchá a přímočará jen ukazuje, jak se některé kdysi nezodpovězené otázky stávají rychle „majetkem“ vědeckého nazírání. Za toto dodatečné teplo mohou radioaktivní izotopy hliníku a železa, tedy izotop 26Al a izotop 60Fe. Jsou to totiž izotopy, které mají velmi krátký poločas přeměny a při svém rozpadu, tak jako ostatní radioaktivní prvky, produkují teplo. U hliníku (26Al) je poločas rozpadu 730 tisíc let a u železa (60Fe) je to 1,5 milionu let. V geologickém měřítku jsou to velice krátce žijící izotopy.
A protože jsou tyto izotopy již dávno vyhaslé, zůstává velkým problémem, jak obsahy těchto izotopů zjistit a dokonce měřit. Radioaktivní hliník 26Al se rozpadá na úplně běžný stabilní izotop hořčíku 26Mg, kterého jsou ve vesmíru a tedy i zemském tělese velká množství (v některých horninách i desítky procent). Podobně je tomu i u železa 60Fe. To se rozpadá na radioaktivní také krátkodobě žijící izotop kobaltu (60Co) a ten zase na další běžný a stabilní izotop niklu (60Ni).
U součástek, které kondenzovaly nejdříve a jsou o dva miliony let starší než ostatní součástky, je „přebytek“ hořčíku 26, což by mohlo naznačovat, že právě tento přebytek vznikl z radioaktivního hliníku.
Z těchto měření vyplývá odpověď na obě výše zmíněné otázky: od nukleosyntetické události k první kondenzaci pevných součástek uplynula jen krátká doba. Také doba mezi kondenzací – vytvořením pevných součástek – a jejich shlukováním do těles byla krátká. Vývoj sluneční soustavy byl, zejména na jejím počátku, velmi rychlý. Dva či pět milionů let před 4,5 miliardami let jsou skutečně nepatrnou a zdánlivě neměřitelnou dobou geologického času.
Pracovní skupina Mezinárodní agentury pro atomovou energii (MAAE), která přezkoumává japonskou politiku vypouštění upravené vody z jaderné elektrárny Fukušima Dai-iči ...
Firma Fusion Processing Ltd. oznámila pokračování vývoje svého CAVStar® Automated Driving System jako součásti druhé fáze úspěšného projektu autonomního (tj. bez řidiče) autobusu CAVForth ve Skotsku.
Octan sodný neboli horký led je úžasná chemikálie, kterou si můžete připravit doma a dělat s ní pokusy. Potřebujete jen jedlou sodu a ocet (resp. kyselinu octovou).
Rozvoj tzv. komunitní energetiky u nás pořád brzdí chybějící legislativa. Chystaná novela energetického zákona by měla dovolit sdílet vyrobenou elektřinu mezi jednotlivými odběrnými ...
Když kosmické lodě vstupují do atmosféry, pohltí je plazmový plášť, který může přerušit komunikační signály se zemí.
Krásně a jednoduše vysvětleno se srozumitelnými animacemi. V angličtině.