Fyzika a klasická energetika

Článků v rubrice: 266

Nové supermateriály využívají odpadní teplo

Termodynamika je neúprosná. Její zákony určují, že více než polovina energie využívaná v autech, myčkách nádobí a jinde se ztrácí ve formě odpadního tepla. Tento údaj je ale jen průměr: v motorech aut je to až 70 %.

Fotogalerie (2)
Skutterudity se nacházejí i u nás v Jáchymově nebo Příbrami. Tento pochází z Maroka. (Zdroj: Wikimedia Commons, Rob Lavinsky, iRocks.com)

Ke zvýšení celkové energetické účinnosti by vedlo i to, kdyby se k výrobě elektřiny využila jen malá část odpadního tepla. Umožňují to například termoelektrické materiály, které umějí díky využití rozdílů teplot produkovat elektřinu. Pokud byste termoelektrickým materiálem obalili výfuk auta, elektřina z odpadního tepla bude napájet elektroniku auta. A jestliže se připojí termoelektrické prvky do ledničky, její odpadní teplo ji také pomůže napájet. Připojíme-li tyto materiály do slunečních panelů, pak se nikoliv jen sluneční světlo, ale i sluneční teplo využije k výrobě elektřiny.

Je to příliš lákavé, než aby to byla pravda? Zatím ano. Dosud nejúčinnější termoelektrický materiál – tellurid olova – totiž není v elektrických zařízeních pro využití v praxi povolen, protože olovo je jedovaté. A kdyby se olovo zaměnilo za jeho méně toxického bratrance vizmut, bylo by to finančně drahé. Po desetiletích výzkumu se k již existujícím zatím nepodařilo objevit alternativní termoelektrický materiál. Navíc, existující materiály mají podprůměrnou účinnost, která dále klesá při vyšších teplotách. To je činí neužitečnými například u automobilových motorů.

Skutterudit

Minerál arsenid kobaltu obsahující proměnlivá množství niklu a železa (Co, Ni, Fe)As3 nalezený v roce 1845 v norském dole Skuterud je vzácný, ale pro praktické využití perspektivní termoelektrický materiál, a to i při vyšších teplotách. Gregory Meisner, vedoucí skupiny v General Motors, vyvíjí za finanční podpory ministerstva energetiky USA prototyp nákladního automobilu s termoelektrickým generátorem, který by sloužil k získání elektřiny z odpadních plynů k napájení autorádia, hlavních světel a dalšího příslušenství. Jeho vývoj by měl být dokončen do roku 2016. Kromě toho by bylo možné termoelektrický generátor využít i k nabíjení baterií v hybridních automobilech.

Dostupnost vhodných materiálů ale není ideální, protože na těžbu mnoha prvků vzácných zemin má téměř stoprocentní monopol Čína. Dosud hlavně používaný kobalt je drahý a relativně těžko dostupný.

Začátkem roku 2014 oznámili výzkumníci z japonské University of Osaka nadějné výsledky s využitím lacinějšího niklu a železa, ale bohužel s přídavkem thallia, dalšího toxického prvku. Ke snížení nákladů používá Meisnerův tým železo. Zkoumá rovněž, zda by dostupnější vápník nemohl nahradit některé nebo všechny prvky vzácných zemin. Další vývoj těchto materiálů by mohl rovněž zlepšit jejich schopnost odolávat teplotám až 550 °C, což by umožnilo využít i odpadní teplo z vysokoteplotních procesů při výrobě oceli apod.

Podle: Sally Adee: Skutterudites: The heat scavengers.  New Scientist, 2014, č. 2990, s. 40-41.

Václav Vaněk
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Letní univerzita otevřela studentům dveře pro práci v jaderné energetice

Třiatřicet studentů technických vysokých škol a univerzit se letos zúčastnilo Letní univerzity pořádané Skupinou ČEZ. Během dvou týdnů absolvovali v Jaderné elektrárně Temelín ...

Jak metabolismus utváří život

Výzkumníci z Evropské laboratoře molekulární biologie (EMBL) Barcelona a MPI-CBG Dresden odhalují, jak glykolýza ovlivňuje rané embryonální buňky.

30 let malé vodní elektrárny, která přežila již několik povodní

Malá vodní elektrárna Obříství slouží české energetice 30 let. Spolehlivě mění proud středního Labe na bezemisní energii.

Umělou inteligencí proti lidským chybám

Zavádění umělé inteligence ve výrobě prudce roste a celosvětové výdaje na to by do roku 2026 měly dosáhnout 16,7 miliard eur. Lidská chyba je hlavním faktorem způsobujícím 23 ...

Jak se utvářejí chromozomy při buněčném dělení

Vědci z Evropské laboratoře molekulární biologie (EMBL) ukázali, jak se překrývající se smyčky DNA skládají na sebe v dělících se buňkách, aby vytvořily tyčovité chromozomy.

Nejnovější video

Stellarátory - budoucnost energetiky?

Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.

close
detail