Které země Evropy mají největší zájem o „inteligentní“ domácí zařízení
Stále více lidí vyhledává techničtější životní styl, snaží se ulehčit si život či stihnout více, zajistit domácnost plně integrovanými bezpečnostními systémy, ...
Českým vědcům z Ústavu fyzikální chemie J. Heyrovského AV ČR se jako prvním na světě podařilo kontrolovaně rozpohybovat nanočástice na povrchu grafenu. To se dosud pro svou náročnost a delikátnost žádnému vědeckému týmu na světě nepodařilo. Princip tohoto pohybu je navíc zobecnitelný i na jiném povrchu. O svém úspěchu teď vědci publikovali článek v americkém odborném časopise ACS Nano, který se specializuje na nanovědu.
Vědci z týmu Oddělení nízkodimenzionálních systémů měli zdánlivě jednoduchý úkol: dostat do pohybu nanočástečku z bodu A do bodu B na povrchu, a zařídit, aby byl tento pohyb přímo pozorovatelný. Řešit přitom museli poměrně zásadní protichůdné parametry: částice na tomto povrchu musela držet a „neutéct“ z něj, zároveň však ne příliš pevně, aby s ní bylo možné pohybovat. „Grafen jsme zvolili nejen pro jeho unikátní vlastnosti, ale také proto, že ho velmi dobře známe. Víme, jak s ním pracovat, umíme na něm vyvinout potřebné chemické reakce a také víme, jak ho studovat. Povrch grafenu je navíc hladký – nanočástice, které jsme chtěli uvést do pohybu, tak nemusely překonávat žádné náročné překážky,“ vysvětluje Petr Kovaříček, který projekt se svým vedoucím Martinem Kalbáčem přímo řídil.
Spolupráce několika týmů
Kromě dobré znalosti grafenu jako povrchu však hrál roli i fakt, že vědci chtěli celý pokus pozorovat přímo, v reálném čase. K tomu byla zapotřebí fluorescenční mikroskopická technika, a tím pádem i průhledný povrch, na kterém by bylo možné experiment uskutečnit - to grafen také splňuje. Zmíněnou mikroskopickou techniku, která byla pro sledování pohybu nanočástic potřebná, poskytuje oddělení biofyzikální chemie v rámci Heyrovského ústavu, výroba užitých nanočástic je však samostatnou vědní disciplínou. Pro tento projekt byly použity fluorescenční diamantové nanokrystaly vyvinuté týmem Petra Cíglera z Ústavu organické chemie a biochemie AV ČR. Musely však splňovat několik podmínek: nést na svém povrchu vhodné chemické skupiny umožňující uchycení a pohyb po grafenu a být velmi odolné vůči degradaci světlem. Chemii pro pohyb částice po povrchu pak vyvíjel Kovaříčkův školitel Jean-Marie Lehn ze štrasburské univerzity, který se zabývá dynamickou kovalentní chemií.
Plány do budoucna
Vědecký tým zatím pozoroval jen jeden způsob pohybu – lineární. Dalším krokem výzkumu bude zjistit, jak v nanoměřítku vytvořit dráhu složitější a vést částici po povrchu jinou než lineární cestou. Na to je potřebné užití více působících sil.
Zveřejnění této publikace v časopise ACS Nano je úspěšným prvním krokem pro využití pohybu nanočástic v budoucnu. Ty budou moci být použity třeba při přenosu informací nebo molekul. Kovaříček však upozorňuje, že výzkum je teprve v začátcích. „Náš výzkum tím ani nebyl motivovaný – snažili jsme se zvládnout techniku na úrovni, kde to doposud nebylo možné. Je však zřejmé, že princip pohybu je využitelný i v jiných aplikacích – od nanorobotiky, přes biomedicínské použití po nanovědy obecně,“ uzavírá Kovaříček.
Vědecká publikace byla zveřejněna 11. června v magazínu ACS Nano: https://pubs.acs.org/doi/10.1021/acsnano.8b03015
Stále více lidí vyhledává techničtější životní styl, snaží se ulehčit si život či stihnout více, zajistit domácnost plně integrovanými bezpečnostními systémy, ...
Devatenácté století končí. Svět je opojen elektřinou a jinými technickými zázraky. Jules Verne o překot vydává romány, v nichž hrdinové ovládají balóny, ...
Téměř všichni z nás každý den z nejrůznějších důvodů používáme různé webové stránky. Samozřejmě chceme, aby naše uživatelská zkušenost byla pozitivní a pokud možno bezchybná.
Jaguar Land Rover plánuje spolupracovat s nejrenomovanějšími světovými softwarovými a telekomunikačními společnostmi a firmami zabývajícími se mobilitou na vytvoření tzv.
Pro odvod tepla generovaného během provozu tokamaku bude ITER vybaven systémem chladicí vody. Vnitřní povrchy vakuové nádoby (obal a divertor) se musejí chladit na přibližně 240 °C jen několik metrů od plazmatu horkého 150 milionů stupňů.
Krátké výstižné video z dílny Mezinárodní agentury pro atomovou energii ve Vídni ukazuje využití jaderné energie a jaderných technologií při výzkumu vesmíru. Ne každý ví, že jádro pohání vesmírné sondy už po desetiletí. Zopakujme si to. (Film je v angličtině.)