Fyzika a klasická energetika

Článků v rubrice: 274

Zdá se, že antigravitace neexistuje

Nový výzkum antihmoty dává Albertu Einsteinovi opět za pravdu. 27. září 2023 oznámil mezinárodní tým fyziků zásadní zjištění: zdá se, že antihmota reaguje na gravitaci stejně jako běžná hmota, což potvrzuje teorie navržené Albertem Einsteinem před více než stoletím. Zjištění je výsledkem vůbec prvního přímého pozorování antihmoty volně padající v gravitačním poli. Atomy byly tvořeny antiprotony místo protonů a antielektrony (pozitrony) místo elektronů. Antiprotony jsou v podstatě záporně nabité protony (protony jsou kladné v atomech normální hmoty) a pozitrony jsou kladně nabité elektrony (elektrony jsou záporné v atomech normální hmoty).

Fotogalerie (1)
Ilustrační obrázek Pixabay, fszalai

Nový výzkum prokázal, že atomový antivodík – tvořený jedním antiprotonem ve středu s kladně nabitým pozitronem obíhajícím kolem něj – je tažen dolů vlivem zemské gravitace místo nahoru, jak byste možná mohli očekávat u této formy hmoty. Kromě toho, téměř tři desetiletí poté, co byl v laboratoři poprvé vytvořen antivodík, je tento vědecký triumf dalším potvrzením Einsteinovy obecné teorie relativity, která předpovídá, že všechny hmoty, bez ohledu na rozdíly ve svých vnitřních strukturách, reagují na gravitaci podobným způsobem. „Pokud se vydáte po chodbách tohoto oddělení a budete se ptát fyziků, všichni řeknou, že tento výsledek není ani trochu překvapivý. Taková je realita,“ říká Jonathan Wurtele, profesor fyziky na Kalifornské univerzitě v Berkeley, a spoluautor nové studie, který jako první navrhl příslušný experiment již před více než deseti lety. „Ale většina z nich také řekne, že experiment musel být proveden, protože si nikdy nemůžete být jisti. 

Zachycení maličkosti 

Wurtele a jeho tým vytvořili, zachytili a studovali antivodíkové atomy v Evropském centru pro jaderný výzkum (CERN). Atomy byly uvězněny uvnitř magnetické láhve, jejíž oba konce uzavírala ovladatelná magnetická pole. Pro studium účinků gravitace na atomy antivodíku snížili vědci sílu magnetického pole na každém konci láhve, aby atomy mohly uniknout. Když se atom zatoulal k horní nebo spodní části magnetické láhve, bleskově anihiloval. Výzkumníci pak tyto záblesky spočítali a zjistili, že vyšší počet antivodíků putoval na dno láhve než k hornímu konci. Ve skutečnosti se tak chovalo ohromujících 80 % z nich, a tento výsledek byl stejný pro tucet opakování experimentu. Podle nové studie to přesvědčivě prokázalo, že gravitace působí na antivodík stejně jako na normální vodík. Tým také zjistil, že gravitační zrychlení antivodíku je blízké zrychlení normální hmoty, což je 9,8 metru za sekundu na druhou. Očekává se, že tento výsledek bude platit i pro jiné částice antihmoty. 

Bylo by dvojnásob překvapivé, kdyby to nebyla pravda 

Ačkoli nejnovější poznatky vylučují teorie, které předpokládají, že antihmotu gravitace odpuzuje, pouze přesnější měření řeknou, zda nějaký rozdíl v gravitační síle na antihmotu ve srovnání s hmotou existuje. Nicméně, první přímé pozorování gravitačních účinků na antivodík znamená začátek podrobného a přímého hledání gravitační povahy antihmoty, která je ve vesmíru záhadně vzácná.

Pokud se hmota a antihmota chovají podobně, kde je ve vesmíru chybějící antihmota? To je stále otevřená otázka. 

Věří se, že během Velkého třesku byl vesmír bohatý na dvojice částic hmoty a antihmoty, přičemž ty druhé jsou považovány za zrcadlo hmoty, protože její částice mají stejnou hmotnost a pouze opačný elektrický náboj. Pokud se částice hmoty a antihmoty dostanou do kontaktu, navzájem anihilují v prudkém záblesku, který za sebou zanechá čistou energii, např. fotony. Částice hmoty a antihmoty jsou vždy vytvářeny a ničeny ve dvojicích.

Teoreticky to znamená, že vesmír by neměl obsahovat nic jiného než zbytkovou energii - alespoň podle Standardního modelu částicové fyziky, který nastiňuje naše současné nejlepší chápání toho, jak se základní částice chovají pod čtyřmi základními přírodními silami. Jenže tato symetrie byla někdy během evoluce vesmíru narušen. Dnes jasně vidíme, že hmota pozorovatelnému vesmíru dominuje. To je prostě nad rámec toho, co může standardní model vysvětlit. Procesy, které naklonily misky vah tak, že po nich zůstalo tak málo antihmoty, tedy zůstávají dosud neznámé. 

Zjištění byla zveřejněna spoluprací Antihydrogen Laser Physics Apparatus (ALPHA) v CERNu (27. září 2023) v časopise Nature. 

Zdroj: Major CERN experiment proves antigravity doesn't exist — at least when it comes to antimatter | Live Science

(red)
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

MAGIC: Laserová značka s pomocí AI osvětluje původ rakoviny

Výzkumníci EMBL, Evropské mikrobiální laboratoře, vyvinuli nový nástroj založený na umělé inteligenci, který prostřednictvím molekulárních laserových značek ...

Pětidenní cesta pro nejdelší a nejširší komponentu ITER

Rychlostí chůze trvá dosažení lokality ITER z Berre-l’Étang, vzdáleného 70 kilometrů, přibližně 16 hodin. Pokud ale plánujete cestovat pouze mezi 22:30 a časnými ranními hodinami následujícího ...

Kazachstán plánuje výstavbu jaderné elektrárny v lokalitě Balchaš

Kazachstán provozoval 27 let jaderný reaktor BN-350 (první rychlý reaktor světa, chlazený sodíkem) ve městě Ševčenko (za doby Sovětského Svazu), dnes Aktau na břehu Kaspického moře.

Unikátní český patent na využití tepla z odpadní vody

Spolu s teplou odpadní vodou odchází z domácnosti až 60 % spotřebované energie. Česká společnost Akire vyvinula unikátní řešení, jak s tímto potenciálem dále efektivně pracovat.

Od Londýna po Ósaku: Příběhy EXPO pavilonů, které našly nový domov

Světové výstavy EXPO jsou od počátků spjaty s odvážnými architektonickými vizemi a ikonickými stavbami. K nejznámějším patří Eiffelova věž v Paříži či Atomium v Bruselu.

Nejnovější video

Stellarátory - budoucnost energetiky?

Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.

close
detail