Fyzika a klasická energetika

Článků v rubrice: 218

Co je těžší?

Všichni jsme asi někdy zaslechli hádanku: „Co je těžší, kilo peří, nebo kilo železa?“ a také jsme (snad také všichni) odpověděli, že obě stejně, protože kilogram jakékoliv látky váží stále kilogram. Pokusme se ale ukázat, že tato otázka nemá tak jednoduché řešení a lze na ni odpovědět několika způsoby. Pomůže nám simulace, vytvořená v programu Algodoo.

Fotogalerie (1)
Obr. 1

Hmotnost
Hmotnost je jediná fyzikální veličina, která není (zatím) odvozena z přírodních konstant – hodnota jednoho kilogramu je stále vztažena k etalonu, umístněnému v Mezinárodním úřadu pro míry a váhy v Sèvres ve Francii.

Tíha (tíhová síla)

Tíha tělesa je pak síla, kterou působí těleso na podložku. Velikost této síly je určena známým vztahem G = m.g, kde g je tíhové zrychlení. Velikost tíhového zrychlení se na různých místech planety liší, proto bychom při měření 1 kg na geografickém pólu dostali mírně větší hodnotu, než na rovníku (g na pólech je o 0,5 % větší). Takže kdybychom např. peří vážili na rovníku a železo na pólu, měli bychom rozdílné hodnoty. V tomto ale nespatřujeme řešení naší otázky, pouze poukazujeme na skutečnost, že pro správnou odpověď je potřeba určit podmínky. V pokračování článku počítáme s tím, že vážení obou těles probíhá na stejném místě. (Pro úplnost připomeňme, že podle definice váha – na otáčející se Zemi – zahrnuje jednak sílu gravitační (>99 %) směřující kamsi ke „středu Země“, jednak nepatrnou sílu odstředivou směřující kolmo na osu rotace Země.)

Princip vážení

K vážení těles však nejčastěji používáme ne jejich hmotnost, ale tíhu – těleso položíme na váhy a podle toho, jak je přitahováno k Zemi, uvidíme výchylku na vahách a podle ní určíme hmotnost tělesa. Váha je tak vlastně siloměrem, ocejchovaným v kilogramech, nikoli v newtonech. Kdybychom chtěli měřit hmotnost těles a ne jejich tíhu, museli bychom měřit buď setrvačnou hmotnost (např. z periody kmitů tělesa drženého pružinou – tak se to měří např. v beztíži na družicích), nebo změřit hmotnost gravitační (z přitahování dvou těles – např. Cavendishův experiment [1]). To však běžně neděláme. (Opět pro úplnost doplníme, že hodnoty setrvačné a gravitační hmotnosti jsou shodné, což je základem obecné teorie relativity.)

Nejjednodušším způsobem, jak porovnat hmotnosti dvou těles jsou rovnoramenné váhy – na každou stranu vah umístíme tělesa a podle rovnovážné polohy vah určíme, které je těžší.

Jak jsme zmínili, váhy však neměří hmotnost, ale sílu. A pokud budeme měření provádět v našich podmínkách, nevstupuje do měření pouze tíha tělesa, ale také další síla – síla vztlaková. Z Archimedova zákona víme, že na každé těleso v tekutině působí síla, úměrná jeho objemu a hustotě tekutiny, v níž je ponořeno. A okolní vzduch je také tekutina, i když jeho hustota je mnohem menší než hustota vody (řádově 1 000×).

Ve hře je i vztlaková síla

Proto bude na vážené peří a železo působit také vztlaková síla, a protože hustota peří je mnohem menší než hustota železa, má mnohem větší objem a vztlaková síla působící na peří bude mnohem větší než na železo. Váhy měří výslednou sílu – tedy rozdíl tíhy tělesa a vztlakové síly. I když je vztlaková síla v porovnání s tíhou obou těles malá, měli bychom s jejím vlivem počítat, chceme-li měřit přesně, řekněme alespoň na tisíciny. Pak je tedy zřejmé, že na obou stranách vah nebudou síly stejné. U přesných vážení se proto vždy provádí „redukce na vakuum“, tj. od změřeného údaje se odpočítává vztlak ve vzduchu za daných podmínek. Pokud bychom ji provedli anebo pokudbychom měření prováděli ve vakuu, byly by při klilu železa a kilu peří váhy vyvážené (ve vakuu nepůsobí vztlaková síla).

Pokud ovšem vyvážíme železné závaží peřím ve vzduchu, bude muset být nadlehčovaného peří o trochu víc a když pak vzduch vyčerpáme, nebude na tělesa působit vztlaková síla a váhy se ve vakuu právem vychýlí na stranu peří. Takto odměřený kilogram peří je tedy těžší, než kilogram železa!

Je ale možné vážit i tak, že kilogram železa bude těžší, než kilogram peří – pokud železo vyvážíme s peřím ve vakuu a pak váhy umístíme do vzduchu, bude na peří působit větší vztlaková síla a váhy tedy ukáží, že kilogram peří je lehčí, než kilogram železa

Uplatnění programu Algodoo

Všechny tyto možnosti můžeme předvést buď demonstračním experimentem s dasymetrem [2], nebo je jednoduše nasimulovat v programu Algodoo.

Nejdřív začneme vytvořením vah – stačí nám nakreslit obdélník a do jeho středu umístit čep, aby se mohl volně otáčet. Na konce (nebo kamkoliv ve stejné vzdálenosti od středu) připevníme dvě tělesa (nejjednodušeji obdélníky) o stejné hmotnosti, ale jiné hustotě a tedy objemu. Stačí nakreslit dva různé obdélníky a v nabídce material nastavit jejich hmotnost na stejnou hodnotu. Pokud „vypneme“ vzduch (obr. 1), budou váhy vyvážené. Pak jen vzduch „zapneme“ a uvidíme, že kilogram peří je lehčí než kilogram železa. Pokud bychom chtěli obě tělesa vyvážit, budeme muset zvýšit hmotnost peří. Z toho mimochodem vyplývá, že čím větší objem vážíme, tím větší hmotnost má. Takže čím větší meloun si koupíme, tím větší část máme zadarmo (ovšem reálně je tento rozdíl zanedbatelný).

K realizaci v Algodoo poznamenejme, že vzhledem k ideálním podmínkám (žádné tření ve vahách) je vhodné k vahám připevnit pružinu (nebo dvě) s malou tuhostí a velkým tlumením – váhy se tak nerozkmitají.

Simulaci jsme umístili na internet [3], kde si ji lze stáhnout a vyzkoušet. Součástí simulace jsou i okna k měnění parametrů závaží. Od dubna je Algodoo zdarma, takže jej můžete kdykoliv volně používat, a to i ve škole.

Zdroje:

[1] http://en.wikipedia.org/wiki/Cavendish_experiment

[2] http://fyzweb.cz/materialy/videopokusy/POKUSY/VYVEVASVAHADLEM/INDEX.HTM

[3] http://goo.gl/csIId


Jaroslav Koreš
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Kuriózní pojídání arsenu

Určité empirické zkušenosti s jedovatými látkami pocházejí již z doby prehistorické, ale první písemné zmínky o nich najdeme ve starém Egyptě. Vražedné a sebevražedné prostředky se těšily velké pozornosti také v antickém Řecku a Římě, avšak svého vrcholu dosáhlo travičství až v době renezance.

Zadrátovaný ITER

14. dubna 2020 uplynulo 40 let od havárie Apolla 13. Kosmonauti tehdy na Měsíc nevystoupili, „pouze“ ho s vypětím všech sil obletěli. Jejich šťastný návrat na Zemi sledoval s rozechvěním celý svět.

Deštný prales pod Antarktidou

Antarktida nebyla vždy zemí ledu. Před miliony let, kdy byla stále součástí obrovského kontinentu na jižní polokouli zvaného Gondwana, vzkvétaly poblíž jižního pólu stromy. Nově objevené fosílie stromů a dalších organizmů odhalují, jak se pralesu dařilo.

Dvě cívky na cestě a sedmnáct jich čeká

V letech 2004-2005, kdy se rozhodovalo, zda se bude tokamak ITER stavět v Japonsku nebo v Evropě, byla jedním z velmi diskutovaných argumentů přeprava výrobků. Ty rozměrné  se měly dopravovat od výrobce na staveniště ITER po moři.

Je doba koronavirová ránou pro ekologii nebo příležitostí ke změně?

V internetových diskuzích se ve spojení s nouzovým stavem objevila polemika, zda má smysl třídit i nadále domácí odpad. Někomu to najednou přijde zbytečné. Všimli jste si ale, že právě nyní raději sáhnete po hygienicky zabalených potravinách a doma vám tak násobně přibylo plastů?

Nejnovější video

Bez jaderné energie se ve vesmíru daleko nedostaneme

Krátké výstižné video z dílny Mezinárodní agentury pro atomovou energii ve Vídni ukazuje využití jaderné energie a jaderných technologií při výzkumu vesmíru. Ne každý ví, že jádro pohání vesmírné sondy už po desetiletí. Zopakujme si to. (Film je v angličtině.)

close
detail