Fyzika a klasická energetika

Článků v rubrice: 265

Elektřinu pod zem?

Orkán Emma, který se o víkendu 29. 2. - 2. 3. 2008 přehnal přes Českou republiku, pustošil lesy, shazoval střechy a ničil rozvodné sítě. Jen společnosti ČEZ způsobil podle prvních odhadů škody za 150 milionů, další škody vznikly České přenosové ČEPS i ostatním distributorům, např. E.On. Mnoha odběratelům způsobilo přerušení dodávky elektrického proudu z důvodu spadlého vedení velké nepříjemnost. Někteří se, celkem vzato logicky, začali ptát, proč se vedení nezakopává pod zem, ale vede volně krajinou napospas rozmarům počasí.

Fotogalerie (3)
Orkánem zdeformovaný stožár a příprava tzv. bypassu, tj. přemostění poškozeného úseku

Šest paralelních kabelů a ochranné pásmo

Vedení zvláště vysokého napětí (zvn), tj. vedení o napětí vyšším než 300 kV, v kabelech uložených pod zemským povrchem je zatím i ve světě výjimečné a ojedinělé. Vesměs se toto řešení používá v těch případech, kdy stavba nadzemního vedení je vyloučena z prostorových důvodů, např. v husté městské zástavbě. Pokud by se měla použít i v krajině, je nutné počítat s tzv. paralelními kabely, tj. na trase by bylo třeba umístit 6 vzájemně prostorově oddělených jednofázových kabelů. To znamená udržovat celkovou šíři kabelové trasy zhruba 5 až 6 m s ochranným pásmem 3 metry od každého krajního kabelu. Energetickým zákonem je zakázáno zpětné vysazování trvalých porostů v trase a ochranném pásmu podzemního vedení.

Problémem je i otázka vymezení ochranného pásma kabelového vedení, včetně zajištění bezpečných přejezdů např. pro stroje a mechanismy používané v zemědělství a lesnictví. Ochranné pásmo by muselo být viditelně označeno, např. pomocí souvislého oplocení nebo výsadbou živých plotů s přístupovými vjezdy k místům kabelových spojek i k přejezdům (obdobně jako je tomu u dálnic). Každé takovéto řešení však způsobí komplikace jak provozovateli kabelového vedení, tak i ostatním uživatelům daného území a ztěžuje přirozenou migraci zvěře.

Obří výkopy, nové komunikace, betonové stavby

K místu uložení by se kabely přivážely na bubnech o průměru 6 metrů a včetně kabelu o hmotnosti 20 tun. Na jeden kilometr trasy by bylo třeba 12 takových bubnů. To by znamenalo výstavbu speciální komunikace, která by navíc kvůli údržbě, opravám a zajištění bezpečnosti kabelů musela být zachována i po dokončení stavby.

Jednotlivé délky kabelů se cca po 500 m trasy spojují kabelovými spojkami, které musejí být přístupné kontrole a měření. To by si vyžádalo vybudování bezpečnostních betonových objektů přibližně 6 x 6 x 2 m zapuštěných z větší části pod zem. Také k těmto objektům by bylo nutné vybudovat trvalé přístupové komunikace, sloužící nejen pro výstavbu, ale i pro provoz a opravy kabelového vedení a nakonec i pro jeho budoucí obnovu.

Vlastní výkop pro kabelovou trasu představuje vytěžit na každý kilometr prosté trasy přibližně 13 500 m3 zeminy (popř. i skály). Vzhledem na problémy s odvodem ztrátového tepla kabelu by bylo nutné cca 25 % objemu tohoto materiálu odvézt na skládky a nahradit ho speciálním materiálem na zásyp.

Nižší přenosová schopnost při desetinásobných nákladech

Ve srovnání s nadzemním vedením má kabelové vedení zásadní nevýhodu spočívající ve značně nižší přenosové schopnosti kabelu, která je způsobená vyšší tzv. kapacitní reaktancí. Proto by bylo nutné minimálně na obou koncích a uprostřed trasy (zhruba po 30 km) doplnit tzv. kompenzační zařízení, což je v praxi uzavřený areál pro rozvodné zařízení zvn vybavený kompenzátory (kompenzační tlumivky o jednotkovém výkonu minimálně 100 MVAr) a budovy pro systémy řízení, chránění a vlastní spotřebu stanice. Ani tato stavba by se neobešla bez nových komunikací pro přepravu těžkých a nadrozměrných nákladů/zařízení.

Další komplikace přináší např. křížení kabelové trasy se silnicemi a železnicemi, překonávání vodních toků apod. a vysoké náklady, které jsou ve srovnání s náklady na výstavbu nadzemního vedení zhruba 10krát vyšší a jsou tak plně srovnatelné s náklady na výstavbu dálniční komunikace.

Zdroj: materiály ČEPS, a. s., a ČEZ, a. s.

(red)
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Data z mizejícího ledovce

Bolívijský ledovec Huayna Potosí se každým rokem zmenšuje a ustupuje do svahu. Ve výšce 5 100 metrů nad mořem je vzduch kolem něho řídký.

Druhý pokus na ITERu na výbornou

Transport sektorového modulu #7 vakuové nádoby do montážní jámy tokamaku ITER ve čtvrtek 10. dubna 2025 představoval ne „dva v jednom“, nýbrž „mnoho věcí v jednom“.

Malé a velké reaktory

Mezinárodní agentura pro atomovou energii ve Vídni předpovídá, že do roku 2050 se instalovaná kapacita jaderných reaktorů na světě zdvojnásobí – z 371 GW(e) v roce 2022 na 890 GW(e) do roku 2050.

Malinké želvušky přežijí i ve vesmíru

Droboučký živočich, želvuška (tardigrada) může přežít nehostinný chlad i smrtící ionizující záření ve vesmíru. Všudypřítomná mikroskopická zvířátka, ...

Kvantové počítače budou splněným snem hackerů

Můžeme zastavit hackery, kteří loví vše od vojenských tajemství po bankovní informace? Až se kvantové počítače stanou samozřejmostí, současné kryptografické systémy zastarají.

Nejnovější video

Stellarátory - budoucnost energetiky?

Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.

close
detail