Data z mizejícího ledovce
Bolívijský ledovec Huayna Potosí se každým rokem zmenšuje a ustupuje do svahu. Ve výšce 5 100 metrů nad mořem je vzduch kolem něho řídký.
Jedním z paradoxů fúze, prakticky nevyčerpatelného zdroje energie budoucnosti, je skutečnost, že spoléhá na prvek, který v přírodě existuje jen velmi sporadicky. Tritium, jeden ze dvou vodíkových izotopů používaných v ITER a v budoucích fúzních jaderných reaktorech, je v přírodě přítomen jen ve stopovém množství.
Jediný zdroj snadno dostupného tritia pochází ze štěpných těžkovodních reaktorů, jako je např. typ CANDU (vyvinutý Kanadou v letech 1950-60 a používaný dnes i v Rumunsku, Jižní Koreji a Indii). Tritium generované těmito reaktory v poměrně malém množství je však pouze vedlejším produktem.
Výroba tritia v reaktorech CANDU na celém světě činí přibližně 20 kg ročně - není to moc, ale stačí na to, aby tokamak ITER napájela během plánovaných patnácti let fúzní etapy slučování deuteria a tritia. Průmyslová fúzní elektrárna ovšem bude potřebovat průměrně 70 kg tritia na 1 GW tepelného výkonu za rok (při plném zatížení). A představme si, jestliže vývoj fúze půjde tak, jak doufáme, budou v prvních desetiletích 22. století fúzních elektráren existovat stovky, ne-li tisíce.
Odkud pochází všechno tritium?
Příroda, jako kdyby předvídala tuto výzvu, nabízí řešení, které kombinuje eleganci a účinnost - samotná fúzní reakce vytvoří tritium, které bude následně tuto reakci„krmit“. Navíc proces probíhá ve vakuové nádobě v bezpečném, nepřetržitém a uzavřeném cyklu. Klíčem k tomuto procesu je izotop 6 lithia (6Li), který, ozářen neutrony, vytváří tritium. ITER bude zkoušet různé koncepce "modulů pro získání tritia" (test blanket moduls). Každý modul bude jedinečný ve své architektuře, v systému chlazení, jakož i ve struktuře materiálů, to je ve formě sloučenin lithia, a způsobu, jakým bude tritium extrahováno. Ať budou testované sloučeniny kapalné nebo pevné, budou obsahovat lithium obohacené izotopem 6Li v rozsahu 50 %.
Bude dostatek lithia k udržení produkce tritia?
Jaap van der Laan, jaderný inženýr v sekci Tritium Breeding Systems tokamaku ITER, má jednoduchou a rychlou odpověď. "Dostupnost lithia nebude pro příštích tisíc let problémem…“ Jeho víra spočívá v několika základních číslech a extrapolacích. "Ve světě je přibližně 50 milionů tun prokázaných zásob lithia, což znamená přibližně 3 miliony tun 6Li." V současné době jsou hlavními dodavateli lithia Chile, Bolívie a Argentina. V severní Argentině se extrahuje uhličitan lithný ze solných ploch v nadmořské výšce 4 000 metrů. Slušné zásoby lithia se našly v Krušných horách. Stejně jako většina minerálů je lithium obsažené také v mořské vodě. Při koncentraci 0,1 ppm se hmotnost lithia rozptýleného v oceánech planety odhaduje na 250 miliard tun. Japonské středisko Rokkasho Fusion Energy Center již vyvíjí metodu nízkoenergetické extrakce lithia z mořské vody. Obecně se má za to, že polovina světové zásoby se nachází ve slané vodě, druhá polovina v horninách.
Fúze není jediným spotřebitelem lithia. Neustále se rozšiřuje trh s lithium-iontovými bateriemi pro notebooky, mobilní telefony, bezdrátové elektrického nářadí a samozřejmě elektrická auta. Tento trh již spotřebovává 40 procent světové produkce lithia a jeho apetit se bude stále rozšiřovat, neboť popularita elektrických automobilů neustále roste. "Tento trh nevidím jako konkurenci," říká Jaap. Lithium se dnes používá pro baterie (40 % celkové produkce), výrobu skla (24 %), maziv (12 %), chlazení (4 %) atd.
Kolik lithia bude potřeba?
Na získání 70 kg tritia potřebných na výrobu 1 GW tepelné energie na jeden rok je třeba 140 kg 6Li. Za předpokladu 30% účinnosti konverze tepelné energie na elektrickou energii bude výroba 1 GW elektrické energie (odhadovaný průměrný výkon fúzního reaktoru) vyžadovat přibližně 500 kg 6Li za rok, což by pro hypotetických 10 000 fúzních reaktorů znamenalo celkový požadavek 5 000 tun 6Li ročně. Získání 5 000 tun vzácného izotopu bude vyžadovat ročně zpracování (pomocí dobře zavedených technik separace izotopů) přibližně 70 000 tun běžného lithia - stále jen velmi malou část dnes známých dostupných zdrojů.
Specialisté na fúzi se obecně domnívají, že ve světě, kde by se veškerá energie získávala fúzí, by množství lithiové rudy přítomné v zemské kůře stačilo k zajištění potřebného tritia na několik tisíc let. Pokud jde o lithium přítomné v oceánech, mohlo by uspokojovat naší potřebu energie po miliony let. V té době však lidstvo pravděpodobně bude vnímat fúzi deuteria a tritia podobně, jako se dnes díváme na spalování rašeliny - nejprimitivnější techniku založenou na palivu se zvláště nízkým výnosem ...
Bolívijský ledovec Huayna Potosí se každým rokem zmenšuje a ustupuje do svahu. Ve výšce 5 100 metrů nad mořem je vzduch kolem něho řídký.
Transport sektorového modulu #7 vakuové nádoby do montážní jámy tokamaku ITER ve čtvrtek 10. dubna 2025 představoval ne „dva v jednom“, nýbrž „mnoho věcí v jednom“.
Mezinárodní agentura pro atomovou energii ve Vídni předpovídá, že do roku 2050 se instalovaná kapacita jaderných reaktorů na světě zdvojnásobí – z 371 GW(e) v roce 2022 na 890 GW(e) do roku 2050.
Droboučký živočich, želvuška (tardigrada) může přežít nehostinný chlad i smrtící ionizující záření ve vesmíru. Všudypřítomná mikroskopická zvířátka, ...
Můžeme zastavit hackery, kteří loví vše od vojenských tajemství po bankovní informace? Až se kvantové počítače stanou samozřejmostí, současné kryptografické systémy zastarají.
Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.