Nové jaderné palivo v Dukovanech
Historicky první palivové soubory od společnosti Westinghouse dorazily do Jaderné elektrárny Dukovany 16. června. Následují po dodávkách do Temelína.
Plutonium je kov, ale nepřitahuje ho magnet. Proč? Zdá se, že vědci rozluštili „chybějící magnetismus“. Skupina vedená Markem Janoschekem z Los Alamos National Laboratory odhaluje zjištění o elektronech v atomech plutonia, které by mohlo vést k přesnějšímu předvídání a vyladění vlastností nových materiálů.
Něco o atomech
Elektrony obíhají kolem atomových jader, jejich dráhy nazýváme orbity. Každá orbita může být obsazena jen určitým počtem elektronů. V běžných kovech je počet elektronů v poslední orbitě přesně dán, např. měď má v této vnější orbitě jeden, železo dva elektrony. Pokud nepřidáme zvnějšku energii (např. ve formě tepla nebo elektřiny), jsou elektrony v nejnižším energetickém stavu zvaném základní stav. Aby zjistili, jak se to má s elektrony v plutoniových atomech, Janoschek a jeho tým ostřelovali vzorek plutonia neutrony. Neutrony i elektrony mají magnetické momenty (dané jejich spinem). Když s plutoniem interagují, dá se tím pozorovat počet elektronů ve vnější orbitě. Tak výzkumníci odhalili, že plutonium může mít v základním stavu čtyři, pět nebo šest elektronů ve vnější orbitě. Přestože dřív se předpokládalo, že počet elektronů musí být fixován, není to na výzkumu to nejdůležitější. „Plutonium fluktuuje mezi třemi různými konfiguracemi. Ve skutečnosti může být ve všech třech najednou“, řekl Janoschek. Tento divný stav vysvětluje teorie z roku 2007, kdy fyzikové z Rutgersovy univerzity vyvinuli matematické modely, kterými ukázali, že elektrony v plutoniových atomech se mohou takto chovat. Experiment z Los Alamos je první, který ověřil pravdivost této teorie.
Divné vlastnosti plutonia
Tato fluktuace může vysvětlit, proč plutonium není magnetické: magnety získávají svou přitažlivou sílu z nespárovaných elektronů. Každý elektron si můžeme představit jako malinký magnet se severním a jižním pólem. Když elektrony obsazují elektronové dráhy, párují se jižními a severními póly, takže výsledná magnetická pole se vyruší. Někdy elektron nenajde partnera, a jeho pole pak pozorujeme. Protože se ale počet elektronů ve vnější slupce plutonia mění, nespárované elektrony tento efekt nevyvolají, a tak plutonium nemůže být magnetické.
Janoschek vysvětluje, že tato vlastnost řadí plutonium mezi dvě skupiny v Mendělejevově tabulce prvků: „Podívejme se na uran, thorium a neptunium - chovají se jako přechodové kovy. Když se podíváte k těžším prvkům, na pravou stranu tabulky, je to jiné. Prvky jako americium a další jako by se víc podobaly prvkům vzácných zemí. Takové, jako např. neodym, vytvářejí velmi dobré magnety, což přechodové kovy často neumějí.“
Matematické předpovídání
Experiment ukázal víc, než jen zvláštní vlastnost plutonia. Matematická teorie spolu s objevem fluktuujících elektronů může pomoci předpovědět chování nových materiálů. Dosud bylo možné zkoumání jen pomocí ovlivňování materiálu teplem, elektrickým a magnetickým polem, nebo ostřelováním částicemi. Matematickým modelem můžeme leccos předpovědět. „Prediktivní teorie materiálů je úžasná věc, protože můžeme jejich vlastnosti simulovat na počítači,“ říká Gabriel Kotliar, profesor fyziky na Rutgersově univerzitě a jeden z vědců, který pracoval na matematických modelech. „U radioaktivních materiálů, jako je plutonium, je to mnohem levnější než dělat skutečné experimenty.“ Pomůže to také vysvětlit jiná zvláštní chování plutonia - prvek se roztahuje a smršťuje při zahřátí nebo při působení elektrického proudu jinak, než jiné kovy.
O plutoniu jsme psali již dříve např. zde: https://www.3pol.cz/cz/rubriky/jaderna-fyzika-a-energetika/2049-kdo-se-boji-plutonia a zde: https://www.3pol.cz/cz/rubriky/astronomie/4-role-plutonia-pri-vyzkumu-vesmiru
Historicky první palivové soubory od společnosti Westinghouse dorazily do Jaderné elektrárny Dukovany 16. června. Následují po dodávkách do Temelína.
Oceány po celém světě údajně ztrácejí kyslík od 50. let minulého století. Příčinou je globální oteplování a znečištění vod.
Bolívijský ledovec Huayna Potosí se každým rokem zmenšuje a ustupuje do svahu. Ve výšce 5 100 metrů nad mořem je vzduch kolem něho řídký.
Transport sektorového modulu #7 vakuové nádoby do montážní jámy tokamaku ITER ve čtvrtek 10. dubna 2025 představoval ne „dva v jednom“, nýbrž „mnoho věcí v jednom“.
Mezinárodní agentura pro atomovou energii ve Vídni předpovídá, že do roku 2050 se instalovaná kapacita jaderných reaktorů na světě zdvojnásobí – z 371 GW(e) v roce 2022 na 890 GW(e) do roku 2050.
Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.