2. března 2012
Vylepšená fotosyntéza
Vše začalo před 1,5 miliardou let, kdy byly fotosyntetizující bakterie porobeny složitější buňkou. Potomci těchto bakterií ztratily schopnost žít nezávisle a vyvinuly se do buněčných „slunečních elektráren“ známých jako chloroplasty.
Chloroplasty v řasách a rostlinách odvozují svůj původ od jediné pradávné kyanobakterie. Jestliže jedna mutace umožnila, aby kyanobakterie uskutečňovala fotosyntézu efektivněji, znamená to, že i jiné druhy bakterií by mohly získat stejné vlastnosti. Důležité je, že kyanobakterie vyvinuly elegantní způsob adaptace na klesající úroveň CO2 v atmosféře, zatímco rostlinám se to podařilo jen na úkor nákladného kompromisu.
Co umí kyanobakterie
Rostliny potřebují CO
2 k výrobě potravy. Přidávají CO
2 k jiné molekule s využitím enzymu rubisko (ribulosa‑1,5‑bisfosfát‑karboxylasa/oxygenasa) a opakováním tohoto procesu získávají uhlík k tvorbě cukrů, proteinů a tuků. Když se fotosyntéza vyvinula před dvěma miliardami let, obsahovala zemská atmosféra mnoho CO
2, ale málo kyslíku. Enzym rubisko má rád jak CO
2, tak kyslík. Když ale konzumuje kyslík, potravu ničí, místo aby ji vytvářel. Když hladina CO
2 klesala a hladina kyslíku rostla, byla fotosyntéza stále méně účinná. Kyanobakterie to řešily tím, že si enzym rubisko uložily do nepatrných vnitřních oddělení buněk označovaných jako karboxysomy a díky tomu až tisícinásobně zvýšily hladinu CO
2 v buňkách a vytvořily si starodávnou atmosféru bohatou na CO
2, v níž se enzym rubisko objevil. „Krása“ karboxysomů spočívá v tom, že zamezují úniku CO
2, protože ionty bikarbonátu vznikající při reakci CO
2 s vodou mohou difundovat dovnitř buněk. Uvnitř je pak jiný enzym – karboanhydráza (carbonic anhydrase) – který přeměňuje bikarbonát zpět na CO
2. Kyanobakterie si tento mechanismus vyvinuly před 350 až 400 miliony lety, kdy se díky rozšíření rostlin po celé zemi velmi zvýšil obsah kyslíku.
Co umí kukuřice a čirok
Zelené rostliny postupovaly jinou cestou a vyvinuly si mírně odlišný enzym rubisko, který spotřebovává méně kyslíku. Tento enzym ale pracuje mnohem pomaleji, takže rostlina musí zásobovat své chloroplasty velkým množstvím enzymu, aby fotosyntéza probíhala rozumným tempem. Asi čtvrtinu dusíku proto rostliny potřebují k tvorbě rubiska. Za posledních dvacet milionů let, kdy úroveň CO
2 klesala na novou nízkou hladinu, si několik rostlin našlo způsob, jak koncentrovat CO
2 procesem, který se označuje jako fotosyntéza C4. Mezi dvě důležité rostliny ovládající tento druh fotosyntézy patří kukuřice a čirok. Proto se nyní výzkum zaměřuje na přenesení této vlastnosti i na jiné plodiny, například na pšenici a rýži. Pokud bude výzkum úspěšný, pak i malé zlepšení by mohlo zvýšit účinnost fotosyntézy o 15‑25 %. Potrvá však určitou dobu, než výzkum přinese praktické výsledky a umožní opět zvyšovat produkci potravin pro neustále se zvyšující počet obyvatel Země.
Zdroj: Bob Holmes: Billion‑year upgrade. New Scientist, 2011, č. 2800, s. 41‑45