Návody na pokusy

Článků v rubrice: 75

Bezdrátový přenos elektrické energie

Americký fyzik a technik srbského původu Nikola Tesla patřil na přelomu 19. a 20. století – spolu s T. A. Edisonem – k největším vynálezcům v oboru výroby, přenosu a využití elektrické energie. Edison byl zastáncem stejnosměrného proudu, zatímco Tesla viděl budoucnost v proudu střídavém a další vývoj elektroenergetiky mu dal v tomto směru za pravdu. Tesla později věnoval svou pozornost a úsilí možnosti bezdrátového dálkového přenosu elektrické energie s využitím střídavého proudu o vysoké frekvenci a velmi vysokém napětí. V tomto případě však pokusy úspěšné nebyly a jeho vysokofrekvenčním generátorem (dodnes mu říkáme Teslův transformátor) se mu podařilo bezdrátově na malou vzdálenost rozsvítit jen luminiscenční trubice. Dosud se bezdrátový přenos energie ve velkém měřítku nepodařil!

Fotogalerie (7)
Teslův patent bezdrátového přenosu energie z roku 1900 (zdroj: https://www.google.com/patents/US1119732 )

Po stopách Nikoly Tesly

Teslovy pokusy, i když nakonec skončily nezdarem a velkými finančními ztrátami, si můžeme v malém měřítku zopakovat i dnes. Pokusíme se „na dálku“ rozzářit svítivou diodu LED. Konstrukce vysílače energie se skládá z cívky, tranzistoru a rezistoru, přijímač je ještě jednodušší: tvoří jej pouze cívka a dioda LED. (Obr. 2)

Přijímač

Připravíme si kartonovou nebo překližkovou podložku o rozměrech 80 mm x 110 mm, izolovaný vodič o průměru 0,5 až 0,8 mm a svítivou diodu. Přijímací cívku s 30 závity navineme na pomocný „trn“ o průměru asi 5 cm. K odizolovaným koncům připájíme svítivou diodu (nezávisí na polaritě) a celek přilepíme tavným lepidlem na podložku. (Obr. 3)

Vysílač

Kromě podložky a vodiče potřebujeme ještě tzv. lámací svorku, křemíkový výkonový tranzistor NPN (např. typ KU611) a rezistor R o odporu 500 až 1000 ohmů. Vysílací cívka má rovněž 30 závitů, ale při navíjení nejprve navineme 15 závitů, uděláme malou odbočku a poté navineme zbývajících 15 závitů. Odizolované konce cívky a střední odbočku zapojíme k tranzistoru, rezistoru a svorkovnici podle schématu. V tomto případě je nutné (na rozdíl od přijímače) dodržet správnou polaritu jak k elektrodám tranzistoru, tak i ke svorkovnici! Elektrody tranzistoru určíme snadno – na spodní ploše jsou u nich vyražena písmena E (emitor) a B (báze), kolektor K je spojen s kovovým pouzdrem tranzistoru. (Obr. 4, 5)

K napájení vysílače potřebujeme zdroj o napětí 3 až 6 V. Vzhledem k tomu, že odběr ze zdroje je několik stovek miliampérů, je vhodnější použít síťový zdroj (např. z nabíječky mobilu) než galvanické články. Při provozu vysílače se sice tranzistor znatelně zahřívá, ale nepoškodí se. Kovové pouzdro slouží jako dobrý chladič a křemíkové tranzistory nejsou na vyšší teplotu choulostivé.

Rozsvítíme diodu na dálku

Po sestavení vysílače a přijímače přistoupíme k prvním pokusům. Připojíme napájecí zdroj a prstem se přesvědčíme, že teplota tranzistoru vzroste – obvodem prochází proud. Když k cívce vysílače přiblížíme destičku s cívkou přijímače, energie šířící se od cívky vysílače „zasáhne“ přijímací cívku a indukuje na jejích koncích napětí. Při malé vzdálenosti obou cívek bude indukované napětí několik voltů, které postačí k rozsvícení diody LED. Při zvětšení vzdálenosti se indukuje napětí menší a dioda zhasne.

Jako správní výzkumníci zjistíme, jak závisí intenzita přenosu energie z vysílače k přijímači nejen na jejich vzdálenosti, ale i na vzájemné poloze obou cívek. Neméně zajímavé bude, jestli se účinnost přenosu energie změní při použití jiných cívek (různý počet závitů, různé průměry či tvary cívek) - takže experimentujte! (Obr. 6, 7)

Princip přenosu energie

Vysílač je z elektronického hlediska tranzistorový oscilátor vytvářející střídavý proud o frekvenci několika kilohertzů. Tento proud prochází vysílací cívkou a vytváří v jejím okolí střídavé magnetické pole. Jestliže do proměnného pole umístíme cívku přijímače, indukuje se na jejích koncích střídavé elektrické napětí. Připojíme-li k vývodům cívky diodu LED, rozsvítí se jen v případě, že je k její katodě připojen záporný a k anodě kladný pól. A k tomu dojde každou druhou půlperiodu procházejícího proudu. Frekvence proudu je poměrně vysoká, rychlé blikání diody není naše oko schopno zaregistrovat a proto se nám zdá, že dioda svítí nepřerušovaně.

Jaroslav Kusala
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Litevské lasery

Lasery, široce používané ve vědě a průmyslu, dnes otevírají úžasné možnosti v různých oborech – od polovodičů, spotřební elektroniky až po lékařské aplikace.

Gravitační díra v Indickém oceánu

V Indickém oceánu je oblast, kde je slabší gravitace, nižší než je průměrná jinde na hladině moří. Prohlubeň leží v Lakadivském moři asi 1 200 km jihozápadně od Indie a byla objevena v roce 1948.

Čína ve vesmíru vyrábí kyslík pomocí „umělé fotosyntézy“, chystá měsíční základnu, obří rakety i solární pole

Astronauti na palubě čínské vesmírné stanice „Nebeský palác“ předvedli nový způsob výroby raketového paliva a dýchatelného kyslíku napodobením chemické reakce v rostlinách.

www.svetenegie.cz – brána do světa energie

Již od roku 1993 myslí energetická společnost ČEZ na to, jak podpořit vzdělávání veřejnosti, a hlavně mladých, v oblasti techniky. Energetika bude potřeboval stále více techniků (a nejen těch) ...

Dominikánská republika vymýtila středomořské ovocné mušky

V rekordním čase se Dominikánské republice podařilo úspěšně potlačit nový vpád středomořské ovocné mušky, vysoce destruktivního škůdce ohrožujícího zemědělskou produkci po celém světě.

Nejnovější video

Stellarátory - budoucnost energetiky?

Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.

close
detail