Návody na pokusy

Článků v rubrice: 75

Bezdrátový přenos elektrické energie

Americký fyzik a technik srbského původu Nikola Tesla patřil na přelomu 19. a 20. století – spolu s T. A. Edisonem – k největším vynálezcům v oboru výroby, přenosu a využití elektrické energie. Edison byl zastáncem stejnosměrného proudu, zatímco Tesla viděl budoucnost v proudu střídavém a další vývoj elektroenergetiky mu dal v tomto směru za pravdu. Tesla později věnoval svou pozornost a úsilí možnosti bezdrátového dálkového přenosu elektrické energie s využitím střídavého proudu o vysoké frekvenci a velmi vysokém napětí. V tomto případě však pokusy úspěšné nebyly a jeho vysokofrekvenčním generátorem (dodnes mu říkáme Teslův transformátor) se mu podařilo bezdrátově na malou vzdálenost rozsvítit jen luminiscenční trubice. Dosud se bezdrátový přenos energie ve velkém měřítku nepodařil!

Fotogalerie (7)
Teslův patent bezdrátového přenosu energie z roku 1900 (zdroj: https://www.google.com/patents/US1119732 )

Po stopách Nikoly Tesly

Teslovy pokusy, i když nakonec skončily nezdarem a velkými finančními ztrátami, si můžeme v malém měřítku zopakovat i dnes. Pokusíme se „na dálku“ rozzářit svítivou diodu LED. Konstrukce vysílače energie se skládá z cívky, tranzistoru a rezistoru, přijímač je ještě jednodušší: tvoří jej pouze cívka a dioda LED. (Obr. 2)

Přijímač

Připravíme si kartonovou nebo překližkovou podložku o rozměrech 80 mm x 110 mm, izolovaný vodič o průměru 0,5 až 0,8 mm a svítivou diodu. Přijímací cívku s 30 závity navineme na pomocný „trn“ o průměru asi 5 cm. K odizolovaným koncům připájíme svítivou diodu (nezávisí na polaritě) a celek přilepíme tavným lepidlem na podložku. (Obr. 3)

Vysílač

Kromě podložky a vodiče potřebujeme ještě tzv. lámací svorku, křemíkový výkonový tranzistor NPN (např. typ KU611) a rezistor R o odporu 500 až 1000 ohmů. Vysílací cívka má rovněž 30 závitů, ale při navíjení nejprve navineme 15 závitů, uděláme malou odbočku a poté navineme zbývajících 15 závitů. Odizolované konce cívky a střední odbočku zapojíme k tranzistoru, rezistoru a svorkovnici podle schématu. V tomto případě je nutné (na rozdíl od přijímače) dodržet správnou polaritu jak k elektrodám tranzistoru, tak i ke svorkovnici! Elektrody tranzistoru určíme snadno – na spodní ploše jsou u nich vyražena písmena E (emitor) a B (báze), kolektor K je spojen s kovovým pouzdrem tranzistoru. (Obr. 4, 5)

K napájení vysílače potřebujeme zdroj o napětí 3 až 6 V. Vzhledem k tomu, že odběr ze zdroje je několik stovek miliampérů, je vhodnější použít síťový zdroj (např. z nabíječky mobilu) než galvanické články. Při provozu vysílače se sice tranzistor znatelně zahřívá, ale nepoškodí se. Kovové pouzdro slouží jako dobrý chladič a křemíkové tranzistory nejsou na vyšší teplotu choulostivé.

Rozsvítíme diodu na dálku

Po sestavení vysílače a přijímače přistoupíme k prvním pokusům. Připojíme napájecí zdroj a prstem se přesvědčíme, že teplota tranzistoru vzroste – obvodem prochází proud. Když k cívce vysílače přiblížíme destičku s cívkou přijímače, energie šířící se od cívky vysílače „zasáhne“ přijímací cívku a indukuje na jejích koncích napětí. Při malé vzdálenosti obou cívek bude indukované napětí několik voltů, které postačí k rozsvícení diody LED. Při zvětšení vzdálenosti se indukuje napětí menší a dioda zhasne.

Jako správní výzkumníci zjistíme, jak závisí intenzita přenosu energie z vysílače k přijímači nejen na jejich vzdálenosti, ale i na vzájemné poloze obou cívek. Neméně zajímavé bude, jestli se účinnost přenosu energie změní při použití jiných cívek (různý počet závitů, různé průměry či tvary cívek) - takže experimentujte! (Obr. 6, 7)

Princip přenosu energie

Vysílač je z elektronického hlediska tranzistorový oscilátor vytvářející střídavý proud o frekvenci několika kilohertzů. Tento proud prochází vysílací cívkou a vytváří v jejím okolí střídavé magnetické pole. Jestliže do proměnného pole umístíme cívku přijímače, indukuje se na jejích koncích střídavé elektrické napětí. Připojíme-li k vývodům cívky diodu LED, rozsvítí se jen v případě, že je k její katodě připojen záporný a k anodě kladný pól. A k tomu dojde každou druhou půlperiodu procházejícího proudu. Frekvence proudu je poměrně vysoká, rychlé blikání diody není naše oko schopno zaregistrovat a proto se nám zdá, že dioda svítí nepřerušovaně.

Jaroslav Kusala
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Co s vysloužilými fotovoltaickými panely, turbínami a bateriemi?

Růst výroby elektřiny z obnovitelných zdrojů energie (OZE) a růst počtu elektrických vozidel (EV) je klíčem ke globálnímu snížení závislosti na fosilních palivech, snížení ...

Co nám vodní houby mohou říci o vývoji mozku

Když čtete tyto řádky, pracuje vysoce sofistikovaný biologický stroj – váš mozek. Lidský mozek se skládá z přibližně 86 miliard neuronů a řídí nejen tělesné funkce od vidění ...

Co uvádí vodní houby do pohybu

Vodní houby nemají neurony ani svaly, přesto se pohybují.  Jak to dělají a co nám to říká o vývoji krevních cév u vyšších živočichů, odhalili vědci z Evropské ...

Erupce sopky Santorini před 520 000 lety

Hluboko pod středomořským dnem, které obklopuje řecký ostrov Santorini, objevili vědci pozůstatky jedné z největších sopečných erupcí, které kdy Evropa viděla.

12 největších sopečných erupcí

V historii jsme byli svědky několika monstrózních sopečných erupcí. Zde je stručný popis 12 z nich. Síla takových erupcí se měří pomocí indexu vulkanické explozivity (VEI), což ...

Nejnovější video

Jak funguje PCR test na coronavirus

Krásně a jednoduše vysvětleno se srozumitelnými animacemi. V angličtině.

close
detail