Obnovitelné zdroje

Článků v rubrice: 219

Co je to palivový článek

Pravděpodobně jste již někdy v televizi nebo v tisku zahlédli zmínku o autech na vodík. Co je to vlastně za motor, který funguje na takovéto palivo? Může se jednat o upravený spalovací motor, vhodnějším pohonem je však elektromotor, pro který potřebnou elektřinu vyrábí z vodíku palivový článek.

Fotogalerie (2)
Princip palivového článku (Zdroj: vzdělávací program Svět energie, ilustrace Simopt)

Palivový článek (angl. Fuel Cell, něm. Brennstoffzelle, fr. Pile combustible) je elektrochemické zařízení, které přeměňuje chemickou energii v palivu přímo na elektrickou energii, podobně jako je tomu například v baterii. Tato přímá přeměna energie umožňuje dosažení podstatně vyšší elektrické účinnosti (až přes 60 %) oproti klasickým energetickým zdrojům.
Palivový článek se skládá z porézních elektrod oddělených elektrolytem. V oblasti pórů elektrod vzniká tzv. třífázové rozhraní - elektroda, elektrolyt a reagenty vzniklé oxidací paliva a redukcí okysličovadla. Základní princip transformace energie je pro všechny palivové články stejný, jednotlivé typy se však liší materiálem elektrod, použitým elektrolytem a pracovní teplotou i konkrétními chemickými reakcemi na anodě a katodě. Princip funkce palivového článku, děj v principu inverzní k elektrolýze, je patrný z obrázku. Rozdíl oproti bateriím spočívá v tom, že do palivového článku je palivo přiváděno kontinuálně a vlastní palivový článek se reakce neúčastní; oproti bateriím a elektrickým akumulátorům zde tedy odpadá problém s omezenou dobou činnosti (palivový článek se nemůže "vybít").
Funkcí elektrody je vyvolat reakci mezi reaktanty (palivo a okysličovadlo) a elektrolytem, aniž by se sama účastnila reakce nebo korodovala. Musí být též elektrickým vodičem, jak vyplývá z definice, a umožnit kontakt tří fází (plynný vodík a kyslík, kapalný elektrolyt a pevná elektroda). Pórovitá elektroda umožňuje kapalině vzlínat malými póry, zatímco tlak plynu jí nedovoluje vnikat do větších pórů. Elektrolyt má tendenci vytvořit tenký smáčivý film na vnitřním povrchu elektrody. Reagující plyn, obtížně rozpustný v elektrolytu, může difundovat skrz tento film a dosáhnout povrchu elektrody, kde dochází k reakci kapaliny a plynu. Struktura elektrody musí být vytvořena tak, aby maximalizovala plochu smáčivého filmu.

Palivo

Základním palivem pro všechny typy palivových článků je vodík.
Pro použití u nízkoteplotních typů palivových článků je třeba klasické palivo (např. zemní plyn) nejdříve upravit v předřazeném reforméru, kde dochází při teplotě cca 800°C k reakci s vodní parou na tzv. syntézní plyn obsahující cca 75 % vodíku a cca 25 % oxidu uhelnatého. Ten následně reaguje s vodní parou na vodík a oxid uhličitý. Ve vlastním palivovém článku se potom elektrochemické reakce účastní již jen vodík.
U vysokoteplotních palivových článků dochází v důsledku vysoké provozní teploty k vnitřnímu reformingu paliva. Částečně se oxid uhelnatý a methan účastní přímo vlastní elektrochemické reakce, ale k tomu dochází pouze stopově, neboť reakce s vodní parou na vodík a oxid uhličitý probihá daleko rychleji.
Existují i palivové články, kde palivem je místo vodíku methanol.

 

Historie

Koncepci prvního palivového článku vytvořil v r. 1839 britský soudce, vědec a vynálezce sir William Robert Grove, který zjistil, že je možné vyrábět elektřinu procesem inverzním k elektrolýze vody.
Jeho článek měl platinové elektrody umístěné ve skleněných trubičkách, jejichž dolní konec byl ponořen do roztoku kyseliny sírové jakožto elektrolytu a horní uzavřená část byla vyplněna kyslíkem a vodíkem. Napětí takového článku bylo přibližně 1 V. Jako indikátor generovaného elektrického napětí a proudu sloužila nádobka, ve které probíhala elektrolýza vody. Celé zařízení neprodukovalo dostatek elektřiny, aby bylo použitelné v průmyslu.
V roce 1889 poprvé použili termín "palivový článek" (fuel cell) Ludwig Mond a Charles Langer, kteří se pokusili vytvořit funkční článek pracující se vzduchem a svítiplynem. Jako jiný zdroj se uvádí William White Jacques, který jako první použil kyselinu fosforečnou jako elektrolyt.
Dr. Francis Thomas Bacon vyvinul v roce 1932 pravděpodobně první úspěšné zařízení s palivovým článkem, kyslíko-vodíkový článek používající niklové elektrody - levnější alternativu ke katalyzátorům Monda a Langera. Kyselý elektrolyt nahradil zásaditým (KOH), který pracoval stejně jako kyselý, ale neměl korozívní účinky na elektrody. V roce 1952 sestrojil Bacon se spolupracovníky 5kW systém s palivovým článkem.
Praktické aplikace palivových článků spadají do 60. let 20. století. V té době použila NASA palivové články vyrobené v Pratt & Whitney jako zdroj elektřiny pro vesmírné moduly Apollo. Tímto popudem byl nastartován intenzívní pokrok ve vývoji palivových článků v nejrůznějších zemích jak na univerzitách a v laboratořích, tak i v průmyslu.

 

Porovnání s konvenčními energetickými zdroji


Výhody
· Vysoká účinnost energetické transformace v důsledku přímé přeměny chemické energie paliva na energii elektrickou
· Velmi nízké emise škodlivin (o několik řádů nižší než u ostatních technologií spalování fosilních paliv)
· Dlouhé periody mezi občasnými poruchami
· Možnost použití množství různých plynných paliv (po úpravě)
· Takřka nehlučný provoz v důsledku absence pohyblivých částí (s výjimkou doprovodných zařízení - dmychadla, kompresory, …)

 

Nevýhody
· Citlivost k některým příměsím v palivu, případně v okysličovadle
· Vysoké investiční náklady
· Dosud příliš nízká životnost
· Účinnost klesá s dobou provozu

Zdeněk Porš
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Podmořský život u Velikonočního ostrova

Podmořský horský řetězec u Rapa Nui, známý také jako Velikonoční ostrov, hostí úžasnou řadu hlubokomořských druhů. Expedice na hřeben Salas y Gómez u Rapa Nui v Tichém oceánu ...

Tajemství radioaktivního promethia

Pomocí nové metody odhalili vědci klíčové vlastnosti radioaktivního promethia, prvku vzácných zemin. Stalo se tak až téměř osm desetiletí poté, co byl tento nepolapitelný prvek vzácných zemin objeven.

Vesmírná robotika se připravuje k explozivnímu růstu

Před pěti lety NASA zahájila misi jako vystřiženou ze sci-fi trháku. Nasadily robotický systém Astrobees na Mezinárodní vesmírné stanici (ISS), který zde pomáhá astronautům s opravami a údržbou.

Chytré meteostanice ve školách

Základní školy na Praze 4, Filosofská a Školní, se mohou pochlubit unikátním projektem monitoringu mikroklimatu a škodlivých látek v ovzduší.

Jsme genetická mozaika

Ve studii, kterou vedli Jan Korbel z Evropské laboratoře molekulární biologie (EMBL) a Ashley Sandersová z Berlínského institutu pro biologii lékařských systémů Centra Maxe Delbrücka ...

Nejnovější video

Jak funguje PCR test na coronavirus

Krásně a jednoduše vysvětleno se srozumitelnými animacemi. V angličtině.

close
detail