Počítače a internet

Článků v rubrice: 115

Jak vypočítat optimální spalování?

Umíme testovat pohonné hmoty a palivové systémy pro jednotlivé typy motorů? Ano, ale dříve to byla pořádná dřina zaměstnávající desítky pracovníků laboratoří a dílen. Klopotná cesta vedla od konstrukce motoru k výběru optimálního paliva. To už díky inženýrům z Alabamské univerzity v Huntsville neplatí. Dnes nám v podstatě stačí výkonný počítač a jeden chytrý program.

Fotogalerie (1)
Víme, kolik si vezme?

Jedná se o program, který dokáže celý proces spalování pohonných hmot namodelovat. Od zážehové teploty, možnou uvolněnou energii přes špičky výkonnosti až po různé rychlosti odpařování a úniky spalin. Je jedno, zda jde o motocykl, nebo motor raketoplánu. Software pro matematický modeling s přehledem zvládá všechny druhy a typy paliv, naftu nebo bio-diesel, kerosin, dřevní líh či benzín. Díky němu je možné efektivitněji navrhovat ekologičtější paliva, zlepšovat výkonnost motorů, přidávat koňské síly pod kapotu nebo zvyšovat dojezdovou vzdálenost vozů.

Stačí počítač

Namísto drahého „reálného přístupu“ k modelování, který by zahrnoval sestavení funkčního motoru a experimentování s jednotlivými palivovými směsmi, zastane prvotní práci počítač. Ze známých a proměnných vybere potřebné informace, které se uplatní ještě před samotnou konstrukcí prototypu motoru, což při testování výrazně sníží provozní náklady.

Pokud chceme získat numerický diagram vnitřních procesů spalování v motoru, první věc, kterou potřebujeme znát, bude výběr paliva. To není vůbec snadné – pohonné hmoty jsou velmi komplexní substance, které dnes obsahují stovky složek, z nichž je třeba vytvořit optimální kombinaci. Doktor Chien-Pin Chen, vedoucí katedry chemického inženýrství na univerzitě v Huntsville, spolu s doktorandem Omidem S. Abianehem proto vytvořili „ideální“ trojsložkovou substanci, která posloužila jako základ testovacího modelu. Na ní pak ověřovali, jak se chovají jednotlivé látky při vstřikování do spalovací komory.

Klíčem je turbulence

Moderní motory vstřikují palivo v přesně stanovených intervalech. Velikost částic palivového aerosolu, jeho složení, teplota okolního prostředí – to vše dohromady ovlivňuje chování každé jednotlivé kapičky paliva. Vnitřní fyzika tělesa je základ. Na výsledném výkonu a efektivní práci motoru se dále podílí odpařování paliva. Vědci z Alabamy na srovnávacím modelu postupně aplikovali rozbor chování všech paliv certifikovaných a uveřejněných ve státní databázi Národního institutu pro normy a technologie (National Institute of Standards and Technology).

„Modelování trajektorie jednotlivých drobných kapek paliva nás vedlo k myšlence, že každé palivo vyžaduje specifický typ vstřikovače,“ říká Chen a dodává: „Otázkou je, jak nejlépe podchytit tvarový design vstřikovače pro co nejefektivnější šíření plamene. Proto jsme se soustředili na turbulentní vstřikovače, které umožňují kompletní rozšíření paliva po celém objemu spalovacího prostoru.“

Problémem řady současných vstřikovačů je, že při zažehnutí paliva způsobují jakousi řízenou mikroexplozi, která ale opotřebovává motor. Mnohem účelnější je dynamické hoření. K tomu je však třeba použít specifické a přesně dávkované palivo. A právě takové už díky modelovacímu počítačovému programu pro jednotlivé motory umíme rychle najít.

Zdroj:

Článek, uveřejněný 18. 3 2013 na serveru ScienceDaily.com pod názvem „Model Allows Engineers to Test Fuel Systems On Computers“.

Radomír Dohnal
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Data z mizejícího ledovce

Bolívijský ledovec Huayna Potosí se každým rokem zmenšuje a ustupuje do svahu. Ve výšce 5 100 metrů nad mořem je vzduch kolem něho řídký.

Druhý pokus na ITERu na výbornou

Transport sektorového modulu #7 vakuové nádoby do montážní jámy tokamaku ITER ve čtvrtek 10. dubna 2025 představoval ne „dva v jednom“, nýbrž „mnoho věcí v jednom“.

Malé a velké reaktory

Mezinárodní agentura pro atomovou energii ve Vídni předpovídá, že do roku 2050 se instalovaná kapacita jaderných reaktorů na světě zdvojnásobí – z 371 GW(e) v roce 2022 na 890 GW(e) do roku 2050.

Malinké želvušky přežijí i ve vesmíru

Droboučký živočich, želvuška (tardigrada) může přežít nehostinný chlad i smrtící ionizující záření ve vesmíru. Všudypřítomná mikroskopická zvířátka, ...

Kvantové počítače budou splněným snem hackerů

Můžeme zastavit hackery, kteří loví vše od vojenských tajemství po bankovní informace? Až se kvantové počítače stanou samozřejmostí, současné kryptografické systémy zastarají.

Nejnovější video

Stellarátory - budoucnost energetiky?

Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.

close
detail