Počítače a internet

Článků v rubrice: 118

Další možnosti Trackeru

V posledním díle našeho miniseriálu o měření pomocí počítače si ukážeme, jak změřit rozměry malých, ale i velkých těles. Jako příklad nám poslouží tuha z mikrotužky. Pokud bychom chtěli změřit její tloušťku, potřebovali bychom mikrometr, nebo alespoň posuvné měřidlo. Můžeme na to však jít nepřímo – pokud si tuhu vyfotíme a na fotografii bude nějaké těleso o známém rozměru, můžeme tloušťku tuhy zjistit pomocí Trackeru.

Fotogalerie (3)
0br. 1 Tracker umí pracovat i s fotografiemi. V našem případě byl srovnávacím tělesem skládací metr.

Měřítkem skládací metr

Tracker umí pracovat i s fotografiemi, takže stačí fotografii v Trackeru otevřít (obr. 1). Po načtení fotografie nastavíme kliknutím na Calibration tools ‑> New ‑> Calibration stick měřítko fotografie. Proto musíme mít na fotografii těleso o známých rozměrech. V našem případě byl tím tělesem skládací metr.

Pomocí zoomu jsme pro větší přesnost metr přiblížili a označili vzdálenost 1 cm. Pak už stačí jen kliknout na Create ‑> Measuring tools ‑> Tape measure. Na zvětšené fotografii označíme dva body na tělese, jejichž vzdálenost chceme zjistit. Pro co nejvyšší přesnost doporučujeme menší rozměry fotografovat v režimu makro, měřené těleso by mělo zaplnit co největší část fotografie.

Přesnost na setiny milimetru

Jak vidíte na obr. 2, měřením jsme určili průměr tuhy do mikrotužky 0,67 mm, výrobcem udávaný průměr je 0,7 mm.

Přesnost takového měření je ovlivněna kvalitou fotografie a přesným označením kalibrovaného a měřeného tělesa. Důležité je také mít měřené těleso ve stejné vzdálenosti od objektivu – pokud by se tato vzdálenost lišila, byla by samozřejmě vypočtená hodnota vlivem perspektivy zkreslená.

Co všechno Tracker umí

Dalšími možnostmi Trackeru jsou spektrální analýza zdrojů světla, modelování pohybu a silového působení nebo práce s vektory.

Přednosti Trackeru se projeví zejména při vyhodnocování rychloběžného videa – klasický digitální fotoaparát snímá video s frekvencí 30 snímků za sekundu. Rychloběžné fotoaparáty pracují s vyššími frekvencemi.

Jak svítí žárovka

Jako příklad můžeme uvést průběh svícení žárovky. Vzhledem k tomu, že žárovka bliká s frekvencí 100 Hz, toto blikání obvyklým fotoaparátem nezachytíme. Zato s rychloběžnou kamerou ho nahrajeme poměrně jednoduše.

Po načtení videa do Trackeru klikneme na Create ‑> RGB region a do místa, kde chceme zjistit intenzitu osvětlení, umístíme „měřidlo“ – kruhovou oblast, jejíž obsah můžeme měnit. Aby vykreslení bylo co nejcitlivější, doporučujeme měřit na nepřesvětlených místech. Graf, popisující rozsvícení žárovky znázorňuje obr. 3. Je na něm jasně vidět, že žárovka pravidelně bliká, a také že úplné nažhavení vlákna trvá zhruba 3 periody (0,06 s).

Videa

Pro zájemce o rychloběžné video doporučujeme seriál o tomto videu na Fyzwebu:
http://fyzweb.cz/clanky/index.php?id=163

O měření rychlosti pomocí Trackeru 3pól již psal:

http://www.3pol.cz/cz/rubriky/pocitace-a-internet/1106-vyuziti-pocitace-pri-fyzikalnim-mereni
http://www.3pol.cz/cz/rubriky/pocitace-a-internet/1105-pokrocile-moznosti-programu-tracker
http://www.3pol.cz/cz/rubriky/klasicka-energetika-a-fyzika/651-jak-rychle-sviha-kord

Jaroslav Koreš
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Co je to QR Code pishing

QR kódy se staly každodenním nástrojem pro rychlý přístup k webovým stránkám nebo digitálním menu restaurací, k provádění online plateb či využívání ...

Letní univerzita otevřela studentům dveře pro práci v jaderné energetice

Třiatřicet studentů technických vysokých škol a univerzit se letos zúčastnilo Letní univerzity pořádané Skupinou ČEZ. Během dvou týdnů absolvovali v Jaderné elektrárně Temelín ...

Jak metabolismus utváří život

Výzkumníci z Evropské laboratoře molekulární biologie (EMBL) Barcelona a MPI-CBG Dresden odhalují, jak glykolýza ovlivňuje rané embryonální buňky.

30 let malé vodní elektrárny, která přežila již několik povodní

Malá vodní elektrárna Obříství slouží české energetice 30 let. Spolehlivě mění proud středního Labe na bezemisní energii.

Umělou inteligencí proti lidským chybám

Zavádění umělé inteligence ve výrobě prudce roste a celosvětové výdaje na to by do roku 2026 měly dosáhnout 16,7 miliard eur. Lidská chyba je hlavním faktorem způsobujícím 23 ...

Nejnovější video

Stellarátory - budoucnost energetiky?

Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.

close
detail