Medicína a přírodověda

Článků v rubrice: 323

Řeka železa

Hluboko pod povrchem naší planety proudí roztavené železo, jehož teplota se blíží teplotě na povrchu Slunce. Proud je široký asi 420 km a nachází se 3 000 km pod Severní Amerikou a Ruskem. Po roce 2000 se jeho rychlost ztrojnásobila a nyní cirkuluje západním směrem rychlostí 40 až 45 km za rok. Ve srovnání s typickou rychlostí tavenin ve vnějším jádru je to třikrát více. Nikdo zatím neví, proč se zrychluje. Má se ale za to, že jde o přírodní jev, který nám pomůže pochopit vytváření zemského magnetického pole, mj. chránícího Zemi před slunečním větrem. Objev železného proudu je dalším důležitým krokem, abychom pochopili, jak funguje vnitřní část naší planety. K objevu přispěly tři satelity „Swarm“, které v roce 2013 vypustila European Space Agency.

Fotogalerie (1)
Podle satelitních měření magnetického pole Země se zdá, že uvnitř zemského vnějšího jádra se otáčejí masivní proudy (válce) roztaveného železa (kresba MD)

Až do hloubky tří kilometrů pod zem

Satelity dokážou měřit kolísání magnetického pole až do hloubky 3000 km pod zemský povrch, kde se roztavené jádro setkává s pevným pláštěm. Zemské magnetické pole vzniká pohybem roztaveného železa ve vnějším jádru, takže zkoumání magnetického pole může odhalit podrobnosti o jádru.

Záhada zrychlování

Phil Livermore z  britské University of Leeds tvrdí, že proud vzniká pohybem roztaveného železa kolem vnitřního pevného železného jádra. Ve vnějším jádru roztaveného kovu jsou paralelní válce rotujícího roztaveného železa. Zatím je ale záhadou, proč se proud zrychluje. Podle Xiaodong Songa z University of Illionois, Champaign, to může souviset s rotací vnitřního jádra. Tento vědec objevil v roce 2005 s pomocí seizmických údajů, že se zemské jádro otáčí rychleji než Země sama. Studium proudu roztaveného železa tak pomůže geofyzikům lépe pochopit chování zemského jádra a také to, jak ovlivňuje sílu magnetického pole.

Dokonalejší znalosti o chování jádra v různých časových a prostorových měřítkách nám pomohou lépe porozumět začátkům vzniku, průběhu a budoucímu vývoji magnetického pole Země. Zdá se, že magnetické pole – zejména po roce 1840 – asi o 5 % za rok slábne. Proud roztaveného železa by měl předpovědět, zda a kdy se magnetické pole změní. Satelitní monitorování umožňuje sledovat aktivitu roztaveného železa v reálném čase.

Podle: Andy Coghlan: Riv er of iron flows near Earth´s core. New Scientist, 2017, č. 3107, s. 10.

Václav Vaněk
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Pětidenní cesta pro nejdelší a nejširší komponentu ITER

Rychlostí chůze trvá dosažení lokality ITER z Berre-l’Étang, vzdáleného 70 kilometrů, přibližně 16 hodin. Pokud ale plánujete cestovat pouze mezi 22:30 a časnými ranními hodinami následujícího ...

Kazachstán plánuje výstavbu jaderné elektrárny v lokalitě Balchaš

Kazachstán provozoval 27 let jaderný reaktor BN-350 (první rychlý reaktor světa, chlazený sodíkem) ve městě Ševčenko (za doby Sovětského Svazu), dnes Aktau na břehu Kaspického moře.

Unikátní český patent na využití tepla z odpadní vody

Spolu s teplou odpadní vodou odchází z domácnosti až 60 % spotřebované energie. Česká společnost Akire vyvinula unikátní řešení, jak s tímto potenciálem dále efektivně pracovat.

Od Londýna po Ósaku: Příběhy EXPO pavilonů, které našly nový domov

Světové výstavy EXPO jsou od počátků spjaty s odvážnými architektonickými vizemi a ikonickými stavbami. K nejznámějším patří Eiffelova věž v Paříži či Atomium v Bruselu.

Pryč s kolonami, rychlejší průjezd i méně nehod

Zatímco dříve byla vrcholem chytrého řízení dopravy ve městech „zelená vlna“ na semaforech, umožňují dnešní technologie propojit městské kamery, senzory, mobilní data i samotná auta.

Nejnovější video

Stellarátory - budoucnost energetiky?

Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.

close
detail