Medicína a přírodověda

Článků v rubrice: 323

Odhalování tajemství fotosyntézy

Úplné pochopení a napodobení procesu fotosyntézy, který umožňuje rostlinám, řasám a dalším organizmům získávat energii ze slunečního záření, by mohlo lidstvu otevřít cestu k novému zdroji energie či přinejmenším vylepšit současné technologie. Američtí vědci přišli s objevem, který vysvětluje záhadu, nad kterou si vědci lámali hlavy více než 3 desetiletí.

Fotogalerie (1)
Ilustrační obrázek fotosyntetizující rostliny - čtyřlístky pro štěstí (foto MD)

V organismech využívajících fotosyntézu tento proces začíná absorpcí fotonu z dopadajícího světla. Důležitou roli v tom hrají pigmenty nacházející se v buňkách - zejména chlorofyl. Chlorofyl s bílkovinami a dalšími pigmenty tvoří základ tzv. fotosystémů. Pigment-proteinové komplexy zvané reakční centra (RC) jsou vlastně účinné fotovoltaické články přeměňující energii slunečního světla na oddělení nábojů, potřebné pro pohon životních procesů. Díky absorbovanému fotonu elektron v pigmentu přeskočí do vyššího energetického stavu, a molekula se tak dostane do excitovaného stavu. Foton tak způsobí přechod elektronu přes membránu umístěnou uvnitř specializovaných oddílů v buňce. „Oddělení náboje přes membránu - a jeho stabilizace - je zásadní, protože vytváří energii, která podporuje růst buněk,“ uvedla biochemička Argonne Deborah Hanson. „Abychom pochopili, jak fotosyntéza funguje, musíme porozumět přenosu elektronů. Pohyb elektronů je zásadní: je to způsob, jakým se uvnitř buňky vykonává práce, říká Philip Laible, biofyzik z laboratoře Argonne.

Elektron si vybírá vždy stejnou cestu

Před více než 30 lety, kdy byla odhalena první struktura těchto komplexních pochodů, byli vědci překvapeni faktem, že po zachycení fotonu se uvolněný elektron mohl vydat dvěma směry. V případě rostlin, řas a bakterií využívajících proces fotosyntézy se však elektron vždy vydává stejnou cestou, což vědci nedokázali vysvětlit. Věděli, že přesun elektronu přes membránu - účinně odebírající energii fotonu - vyžaduje více kroků. Nyní se vědcům z Washingtonské univerzity a z Národní laboratoře Argonne, spadající pod americké ministerstvo energetiky, podařilo ovlivnit jednotlivé kroky celého procesu a změnit trajektorii elektronů. „Snažili jsme se o to více než tři desetiletí. Je to velký úspěch, který otevírá mnoho příležitostí,“ řekl Dewey Holten, chemik na Washingtonské univerzitě.

Už víme, jak ho přimět cestu změnit

Nedávný odborný článek s názvem „Switching sides—Reengineered primary charge separation in the bacterial photosynthetic reaction center“ publikovaný ve Sborníku Národní akademie věd USA, popisuje, jak vědci objevili upravovatelnou verzi proteinového komplexu, který přepíná cestu elektronu - umožňuje aktivaci jedné a deaktivaci druhé. „Je pozoruhodné, že se nám podařilo změnit směr počátečního přenosu elektronů,“ řekla Christine Kirmaier, chemik z Washingtonské univerzity a vedoucí projektu. „V přírodě si elektron vybírá jednu cestu ve 100 % případů. Ale díky našemu úsilí se nám podařilo v 90 % případů přepnout elektron na alternativní cestu. Tyto objevy přinášejí vzrušující otázky pro budoucí výzkum.

Vědci jsou nyní blíže než kdy předtím k možnosti navrhovat systémy pro přenos elektronů, ve kterých mohou poslat elektron na cestu podle svého výběru. Je to důležité, protože získáváme schopnost využít tok energie v biologických systémech k pochopení principů, které povedou k novým aplikacím v abiotických systémech. To by nám umožnilo výrazně zvýšit účinnost mnoha solárních zařízení a případně je značně zmenšit. Máme zde obrovskou příležitost otevřít zcela nové obory světlem poháněných biochemických reakcí, které si nepředstavovala ani příroda. Pokud to dokážeme, bude to obrovské,“ dodává Philip Laible.

 

Zdroje: https://www.anl.gov/article/argonne-and-washington-university-scientists-unravel-mystery-of-photosynthesis

https://www.pnas.org/content/117/2/865

(red)
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Pětidenní cesta pro nejdelší a nejširší komponentu ITER

Rychlostí chůze trvá dosažení lokality ITER z Berre-l’Étang, vzdáleného 70 kilometrů, přibližně 16 hodin. Pokud ale plánujete cestovat pouze mezi 22:30 a časnými ranními hodinami následujícího ...

Kazachstán plánuje výstavbu jaderné elektrárny v lokalitě Balchaš

Kazachstán provozoval 27 let jaderný reaktor BN-350 (první rychlý reaktor světa, chlazený sodíkem) ve městě Ševčenko (za doby Sovětského Svazu), dnes Aktau na břehu Kaspického moře.

Unikátní český patent na využití tepla z odpadní vody

Spolu s teplou odpadní vodou odchází z domácnosti až 60 % spotřebované energie. Česká společnost Akire vyvinula unikátní řešení, jak s tímto potenciálem dále efektivně pracovat.

Od Londýna po Ósaku: Příběhy EXPO pavilonů, které našly nový domov

Světové výstavy EXPO jsou od počátků spjaty s odvážnými architektonickými vizemi a ikonickými stavbami. K nejznámějším patří Eiffelova věž v Paříži či Atomium v Bruselu.

Pryč s kolonami, rychlejší průjezd i méně nehod

Zatímco dříve byla vrcholem chytrého řízení dopravy ve městech „zelená vlna“ na semaforech, umožňují dnešní technologie propojit městské kamery, senzory, mobilní data i samotná auta.

Nejnovější video

Stellarátory - budoucnost energetiky?

Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.

close
detail