Návody na pokusy

Článků v rubrice: 75

Udělejte si magnetický urychlovač

V minulém čísle 3. pólu jsme vám poradili, jak získat miniaturní silné magnety z rozebraného pevného disku počítače.

Fotogalerie (5)
Ilustrační foto

Jistě jste už našli jejich využití k různým účelům, třeba v domácnosti nebo ve škole. Před časem jsme našli na internetu námět ke zhotovení „magnetického“ modelu lineárního urychlovače nabitých částic. Podle jeho autora mělo několik vhodně uspořádaných malých magnetů simulovat činnost opravdového urychlovače. Nápad nás samozřejmě velmi zaujal, ale s běžnými feritovými magnety jsme nedosáhli úspěchu, ocelové kuličky se v „přístroji“ jen líně přemisťovaly sem a tam. Feritové magnety se neosvědčily, protože jejich magnetické pole není dostatečně silné. Počátečními nezdary jsme se nenechali odradit: přibrali jsme na pomoc neodymiové magnety z rozebraného disku a posílili jimi feritové magnety. Úspěch se dostavil a na kuchyňském stole teď místo protonů urychlujeme ocelové kuličky.
Než se pustíte do stavby, připravte si:
• asi 60  cm dlouhý odřezek plastové instalační lišty, kterou používají elektrikáři
• 4 kulaté feritové magnety (průměr 20 m, tloušťka 5 mm)
• 4 neodymiové magnety z pevného disku
• 4 větší ocelové kuličky (průměr asi 15 mm)
• 5 menších ocelových kuliček (průměr
asi 12 mm)

Do instalační lišty vyřežte listem pilky na železo čtyři zářezy pro těsné zasunutí feritových magnetů. Vzdálenost zářezů závisí na rozměrech použitých magnetů a velikosti kuliček, tady bude třeba trochu experimentovat. Při použití uvedených kuliček a magnetů vyhovuje mezi zářezy vzdálenost asi 7 cm. Feritové magnety zasuňte tak, aby jejich odpovídající póly směřovaly stejným směrem. Pro zesílení účinku ke všem feritům přiložte z jedné strany neodymiový magnet. Ke každému feritovému magnetu přiložte velkou a pak malou kuličku a tím je model urychlovače připraven k činnosti. Zbývající malou kuličku položte do drážky a lehce do ní cvrnkněte směrem k neodymiovému magnetu. Po jejím nárazu se vmžiku dají do pohybu i ostatní malé kuličky a poslední odletí z opačného konce lišty neočekávaně velkou rychlostí. V roce 1930 byl uveden do provozu první lineární urychlovač nabitých částic a v různých variantách se používá dodnes. Nejdelší z nich, instalovaný na americké Stanfordově univerzitě, má délku přes 3 kilometry! Princip lineárního urychlovače je jednoduchý – nabitá částice prolétá dlouhou řadou válcových elektrod připojených ke generátoru střídavého napětí. V mezerách mezi elektrodami je částice elektrickým polem postupně urychlována a její energie roste. Čím větší je počet trubic, tím větší energii částice získá. V našem magnetickém modelu jsou ocelové kuličky urychlovány magnetickým polem. Na první pohled je jeho funkce možná nepochopitelná, ale opravdu jen na první pohled. Jde o několikanásobné předávání energie nárazem a o působení magnetického pole.
• První kulička malou rychlostí narazí na první magnet. Její energie se prostřednictvím magnetu předá dvojici kuliček na opačné straně magnetu.
• Menší z obou kuliček odletí (odskočí) prakticky stejnou rychlostí od větší kuličky. Je totiž dál od magnetu, a proto je k němu přitahována menší silou.
• Kulička je po odskočení přitažena – a urychlena – k druhému magnetu. Její energie vzroste, a na druhý magnet proto narazí větší rychlostí. Energie kuličky se předá dvojici kuliček na opačné straně magnetu.
• Menší z dvojice kuliček odskočí a je přitažena – a urychlena – třetím magnetem atd.
• Poslední kulička už získá podstatně větší energii, než měla kulička na začátku „urychlovače“.
(Dobře se podívejte, kam váš urychlovač míří!) Výkon magnetického urychlovače můžete zvětšit přidáním dalších magnetů, změnou velikosti kuliček i vzdálenosti magnetů. Místo větších kuliček můžete přiložit k magnetům i jiné ocelové součástky (větší matky, válečky z ložisek apod.) Mají totiž za úkol jen zvětšit vzdálenost mezi magnetem a odskakující kuličkou. Podaří-li se vám dobře „vyladit“ konstrukci modelu, budete jeho výkonem příjemně překvapeni.

JaK
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Umělá inteligence mezi nadšením a střízlivou vírou

Umělá inteligence se rychle prosazuje i v oborech, kde by ji ještě před pár lety nikdo nečekal. Od role výčepních na festivalech až po rozhodování o postřicích v zemědělství.

Jakou barvu má měsíční světlo?

Modrý měsíc, krvavý měsíc a medový měsíc – tak se nám jeví náš satelit ze Země. Měnící se odstín Měsíce má svůj základ ve vědě – v optice.

Netstalking – internetová archeologie

Přemýšleli jste někdy, co se skrývá za známými webovými stránkami, které denně navštěvujete? Kolik „věcí“ je vůbec na internetu? Je toho mnohem víc, než si myslíte!

Počkáme si na premiéru

V červenci se v severočeském Sokolově objevil argentinský filmový štáb, který natočil první záběry celovečerního dokumentu jménem Huemul.

Mikrobiální zátěž může ovlivnit naše nemoci

Vědci vyvinuli nový model strojového učení pro predikci mikrobiální zátěže — hustoty mikroorganismů v našich střevech — a použili ho k prokázání, jak důležitou roli hraje ...

Nejnovější video

Stellarátory - budoucnost energetiky?

Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.

close
detail