Data z mizejícího ledovce
Bolívijský ledovec Huayna Potosí se každým rokem zmenšuje a ustupuje do svahu. Ve výšce 5 100 metrů nad mořem je vzduch kolem něho řídký.
V posledních letech se v České republice i v okolních státech vybudovala řada fotovoltaických (PV) elektráren. Na konci roku 2008 bylo instalováno v České republice cca 15,7 MWp PV elektráren a systémů, začátkem toho roku činila tato hodnota cca 3,4 MWp a před koncem roku 2007 to bylo jen cca 1,5 MWp. Pro porovnání: koncem roku 2004 to bylo pouhých cca 0,41 MWp. Prudký nárůst nepochybně podpořila státem dotovaná výkupní cena elektřiny z PV elektráren. Prudký nárůst nepochybně podpořila zákonem garantovaná vysoká výkupní cena elektřiny z PV elektráren hrazená z příspěvku, který je připočítáván k ceně každé odebrané kWh.
Trend je celosvětový
Graf na obr. 1 dokládá prudký nárůst celosvětové výroby a instalace PV panelů v posledních letech a vývoj jejich ceny. Pro lepší grafické znázornění je na svislé ose zvoleno logaritmické měřítko, tedy přibližně lineární závislost grafu v posledních letech odpovídá v reálu exponenciálnímu nárůstu výroby.
Příklady největších PV elektráren zprovozněných v České republice v letech 2006-2008
(viz obr.)
Popis konstrukce fotovoltaického systému
V tomto článku uvádíme výsledky ročního sledování malého PV systému s pevným stojanem. Tři PV panely čínské výroby s nominálním výkonem a s účinností fotovoltaické přeměny energie byly umístěny na pevný stojan se sklonem 40° a s orientací k jihu. Tyto panely byly zapojeny do série a připojeny k měniči německé výroby Sunny Boy typ SB 700. Přes tento měnič byl PV systém přímo spojen se sítí 230 V (a.c.) a datalogger umožňoval ukládání dat na paměťovou kartu. Pohled na tento PV systém je na obr. 2 (samotný PV panel vlevo k systému nepatří). Propojení bylo provedeno pomocí kabelů a vodotěsných konektorů firmy Tyco. Tento malý PV systém měl tedy nominální výkon 0,51 kWp a dlouhodobé sledování dat jsme zahájili v září 2007.
Výsledky ročního testování
Systematické měření množství vyrobené elektrické energie na uvedeném PV systému s pevným stojanem a s nominálním výkonem 0,51 kWp ilustruje graf na obr. 3. Podle předpokladu nejvíce vyrobené elektrické energie bylo v červnu, kdy je Slunce nejdéle nad obzorem a vrcholí pod největším úhlem. Navíc v červnu bývají většinou jasné dny. V červenci bývá deštivo zejména v 1. polovině měsíce, proto bylo vyrobené energie méně a v srpnu, i když bývají rovněž jasné dny, už je kratší dobu Slunce nad obzorem a vrcholí pod menším úhlem. Proto i vyrobené elektrické energie bylo o něco méně. Naopak nejméně vyrobené elektrické energie bylo v prosinci, kdy je Slunce nejkratší dobu nad obzorem a vrcholí pod nejmenším úhlem.
V uvedeném ročním sledování činí hodnota vyrobené elektrické energie W = 468,81 kWh/rok. Přepočtená hodnota roční výroby elektrické energie na 1 kWp instalovaných PV panelů je W = 919,24 kWh/kWp.rok.
Graf na obr. 4 porovnává analogický graf roční výroby elektrické energie v prvním bloku větší fotovoltaické elektrárny Ostrožská Lhota (Jižní Morava). Graf byl vytvořen z podkladů zveřejněných v práci [2]. Z vodorovné osy obr. 3 a 4 je vidět, že se nejedná o přesně stejná období, ale vždy o stejně dlouhá období 1 roku. V Ostrožské Lhotě bylo v první etapě instalováno 702 kWp PV panelů s pevným stojanem (viz tabulka). Hodnota roční výroby elektrické energie zde činí 711 MWh/rok a přepočtená hodnota roční výroby elektrické energie na 1 kWp instalovaných PV panelů je 1012,8 kWh/kWp.rok.
V Praze je podle předpokladu přepočtená hodnota vyrobené energie nižší. Možná by však byla nižší o menší hodnotu, kdyby chvilku před západem Slunce v zimním období nestínila sousední budova. Navíc PV panely byly nastaveny se sklonem 40°, ale v Praze je optimální sklon cca 35° pro maximální výrobu elektrické energie za celý rok. To odpovídá nastavení na letní provoz, protože tehdy je vyrobené elektrické energie nejvíce.
Závěr
Náš fotovoltaický systém na České zemědělské univerzitě v Praze je experimentální, slouží k získání dat z dlouhodobého testování a vyhodnocení z hlediska možného množství vyrobené energie. Naměřené hodnoty odpovídají předpokladu a jsou i v relaci s hodnotami z větší PV elektrárny.
Literatura
[1] Libra, M., Poulek, V., Fotovoltaika, teorie i praxe využití solární energie, kniha-monografie, ILSA, Praha, (2009), ISBN 978-80-904311-0-2
[2] Jančík, V., Sluneční elektrárny mají místo na slunci, Alternativní energie, 11, 4, (2008), str.22-23, ISSN 1212-1673
Bolívijský ledovec Huayna Potosí se každým rokem zmenšuje a ustupuje do svahu. Ve výšce 5 100 metrů nad mořem je vzduch kolem něho řídký.
Transport sektorového modulu #7 vakuové nádoby do montážní jámy tokamaku ITER ve čtvrtek 10. dubna 2025 představoval ne „dva v jednom“, nýbrž „mnoho věcí v jednom“.
Mezinárodní agentura pro atomovou energii ve Vídni předpovídá, že do roku 2050 se instalovaná kapacita jaderných reaktorů na světě zdvojnásobí – z 371 GW(e) v roce 2022 na 890 GW(e) do roku 2050.
Droboučký živočich, želvuška (tardigrada) může přežít nehostinný chlad i smrtící ionizující záření ve vesmíru. Všudypřítomná mikroskopická zvířátka, ...
Můžeme zastavit hackery, kteří loví vše od vojenských tajemství po bankovní informace? Až se kvantové počítače stanou samozřejmostí, současné kryptografické systémy zastarají.
Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.