Od farmaceutické chemie k modrému uhlíku
Inés Sanz Alvarezová vyrůstala v Montevideu v Uruguayi a nikdy si nepomyslela, že bude pracovat v mořské vědecké laboratoři, natož v Monaku. Původně pracovala ve farmaceutické chemii.
Učitelé, stěžujete si, že je málo fyzikálních pomůcek? Vaši žáci vám je vyrobí! Jen to vzít za správný konec – čili za srdce. Fyzika je přece k pomilování (nebo k pomylování?).
V prvním ročníku ubíhaly hodiny fyziky v naší třídě poklidně se zrychlením
a = 0 m/s2, podobně jako má těleso pohybující se rovnoměrným přímočarým pohybem. Situace byla ustálená a ke změně mohlo dojít jen působením vnější síly. Dovedete si jistě představit, jaké bylo naše překvapení, když došlo k náhlému výboji. Zdrojem napětí U se stal náš nový vyučující ve druhém ročníku a celou třídou začal procházet proud I. Zákonitě se dostavil odpor R, který se dal vypočítat z Ohmova zákona podle vztahu R = U/I. Stejně jako v běžném životě však byl po čase překonán a obvody začaly přiměřeně fungovat.
Každému významnému objevu předcházela myšlenka a jak známe z historie, k jejímu uskutečnění a naplnění došlo jen tehdy, nenechal-li se badatel ovlivnit okolím. Na začátku našich objevů a vynálezů byla idea našeho pedagoga, kterou jsme se s větším nebo menším skřípěním zubů jali uskutečňovat. Co jiného nám zbývalo, že ano?
Projekt „Mylujeme fysiku!“ spočíval ve vytvoření pomůcek do hodin fyziky, na kterých by se daly současníkům i dalším generacím demonstrovat některé principy fungování tohoto světa, například setrvačná síla, tření, elektrické a magnetické pole a mnoho dalšího. Zní to jednoduše, ale tak snadné to zase nebylo.
Většinou jsme se nejprve pustili do praktické části úkolu. Poličky ve fyzikálním kabinetě se začaly postupně zaplňovat našimi výtvory. Sortiment výrobků byl opravdu široký:
Dřevěná krasavice Matylda (90-60-90) je vlastně rovnoramenná váha, vozík poháněný pastičkou na myši demonstruje přeměny energie, kolem magnetu ponořeného v glycerinu se dají pozorovat magnetické indukční čáry. Další pomůcky se připojují ke zdroji vysokého napětí a srší z nich jiskry nebo se na nich ježí papírové chocholy. Velká pestře vybarvená polystyrenová koule ukazuje, jak to vypadá uvnitř našeho životodárného Slunce, a plechová turbínka se zase divoce roztáčí proudem páry z kotlíku. Kanon z rozebraného piezoelektrického zapalovače střílí do několikametrové vzdálenosti krabičku od kinofilmu a u jiné pomůcky zatížený drát snadno projde kusem ledu (prý se tomu říká regelace ledu). Pomůcky musely nejen fungovat, ale být i názorné a vypadat aspoň trochu esteticky.
Když se nám podařilo uvést pomůcky do provozu, přišla druhá fáze naší vědecké práce – zpracování textu. Měli jsme popsat, na jakých fyzikálních principech naše přístroje pracují a také napsat stručný návod, jak se má pomůcka v hodinách používat. Vyhledávali a shromažďovali jsme informace z literatury i internetu, vybírali vhodné fotografie a kreslili obrázky. Výsledkem naší dvouměsíční práce je, že jsme zase o něco chytřejší a zručnější a že se možná jednou budou naše děti učit s pomocí pomůcek, které udělali jejich rodiče ...
Tereza Dardová, Masarykovo gymnázium Vsetín
Inés Sanz Alvarezová vyrůstala v Montevideu v Uruguayi a nikdy si nepomyslela, že bude pracovat v mořské vědecké laboratoři, natož v Monaku. Původně pracovala ve farmaceutické chemii.
Aktuální výzkum veřejného mínění IBRS provedený ve druhém pololetí 2024 ukázal, že 71 % populace starší 18 let je pro rozvoj jaderné energetiky v České republice.
Jako „modrý uhlík“ se dnes označuje organický uhlík zachycený a uložený oceánem ve vegetačních pobřežních ekosystémech – mangrovových lesích, slaniskách ...
V provozu je 417 jaderných energetických reaktorů s celkovým instalovaným výkonem 375 320 MWe ve 31 zemích světa. Ve výstavbě je 63 reaktorů, které po zprovoznění ...
Prvního kola patnáctého ročníku vědomostní soutěže IT-SLOT pro žáky 8. a 9. tříd se zúčastnilo 17 396 dětí z 298 škol napříč Českem.