Rubriky

Článků v rubrice: 216

Tokamak DIII-D National Fusion Facility se vyzbrojuje

Jeden z nejflexibilnějších a nejlépe vybavených tokamaků pro výzkum fúze na světě prochází v současné době významnými vylepšeními, která usnadní cestu k elektrárnám na principu jaderné fúze. Nové vybavení umožní studium fyziky hořícího plazmatu a jeho udržení. Zatím nejúspěšnější zařízení pro studium termojaderné fúze – tokamak – není nic jiného, než zvláštní druh elektrického transformátoru. Jako takový, je tokamak v principu pulzní zařízení. Vědci a technici usilovně pracují na odstranění, nebo alespoň zmírnění této nevýhody tokamaku. To znamená prodloužit pulzy plazmatu na co nejdelší dobu, ideálně dosáhnout nepřerušovaného režimu činnosti.



Co mají společného Vivaldi s tokamakem ITER?

Pro všechny, kteří přispěli k návrhu a vybudování největšího zdroje negativních iontů na světě, to byl slavnostní okamžik. Generální ředitel ITER Bernard Bigot stiskl spínač a uvedl do pohybu řetězec signálů, na jehož konci se na obrazovce objevilo krátké plazma. Proběhlo veřejné testování svazku neutrálních částic.

Magneto-inerciální fúze

Standardní klasifikace řízené termojaderné fúze rozeznává dva přístupy: inerciální (Inertial Confinement Fusion, ICF) a magnetický (Magnetic Confinement Fusion, MCF). Magnetické udržení využívá omezujícího vlivu magnetického pole na volnost pohybu nabité částice. Plazma se na termojadernou teplotu ohřívá v magnetické nádobě. Inerciální fúze nepoužívá žádné síly k udržení, ale vychází ze základní vlastnosti hmoty, ze setrvačnosti. Všechny procesy potřebné k uvolnění fúzní energie – ionizace, ohřátí a fúze – musí proběhnout v palivu rychleji, než se palivo v důsledku kinetického odstředivého tlaku rozletí do prostoru. Oba přístupy vycházejí z krajních hodnot součinu Lawsonova kritéria:

hustota × doba udržení energie ≥ funkce teploty a typu fúzní reakce

Velkou hustotu a krátkou dobu udržení využívá inerciální udržení, malou hustotu a dlouhou dobu udržení umožňuje magnetické udržení. Je tu však ještě "něco mezi".

Tokamak SPARC

Když jsem v jedné z kapitol knížky Soukromý kapitál ve výzkumu řízené termojaderné fúze (vydané Akademií věd ČR v roce 2017) psal o tom, že známý MIT (Massachusets Institute of Technology) se snaží z "laboratorní novinky osmdesátých let minulého století“ (vysokoteplotních supravodičů REBCO (Rare Earth Baryum Copper Oxide) vytvořit komerční produkt použitelný kupříkladu v tokamaku, hledal MIT investora pro tokamak založený na REBCO supravodičích. Mluvilo se o projektovaném „cenově dostupném, robustním a kompaktním tokamaku“ ARC (Affordable Robust Compact) s téměř dvojnásobnou indukcí magnetického pole 23 Tesla ve srovnání se špičkovou hodnotou 13 Tesla v centrálním solenoidu tokamaku ITER. A hle! Dnes se společnost Commonwealth Fusion Systems (CFS) za pomoci 50 milionů dolarů italské firmy Eni pustila do projektu, na jehož konci by měl být tokamak s vysokoteplotními supravodiči YBCO (ytrium-baryum-copper-oxide).

Peter Clive Thonemann, autor ZETA

10. února 2018 zasáhla pamětníky počátků jaderné fúze smutná zpráva. Zemřel v požehnaném věku 100 let Peter Clive Thonemann, který stál u zrodu fúzního zařízení zvaného ZETA, toroidálního Z-pinče. Ve své době to bylo největší fúzní experimentální zařízení, které mělo dohnat vědecko-technický náskok Sovětského svazu (u zrodu prvních fúzních zařízení, tokamaků, stáli ruští vědci Lavrentěv, Tamm, Arcimovič a především Sacharov). Autor přežil ZETA o 49 let.

Charles E. Gray: ZELENÉ SLUNCE

San Francisko hoří, v plamenech jsou všechna velká města ve Spojených státech.  Ani jaderný útok, ani meteorit či Godzila. To jen Saudové přiškrtili kohoutky, cena benzinu vyletěla do nebe, aby vzápětí spadla na nulu. Nebyl totiž benzin žádný. Naštvané obyvatelstvo začalo rabovat a bylo jedno, zda elektroniku nebo dětské plenky. Policie byla bezmocná, bankomaty vypáčené, banky zamčené na sto západů, národní garda v ulicích. Ozývala se střelba a nářek raněných. Tekla krev, ale netekl benzin. V chaosu a ve zmatku dopravní zácpy spěchala doktorka Jocelyne Wuová do své firmy Prometheus Ltd. Concepts. Dnes chtěla investorovi předvést své Baby.

... 1 « 19 20 21 22 23 24 25 » 36 ...

Nejnovější články

Před pětadvaceti lety vyrobil Temelín první elektřinu

Přesně před 25. lety, 21. prosince 2000 o půl deváté večer, připojili energetici nejvýkonnější český zdroj k přenosové soustavě. Historické chvíle se účastnili vrcholní ...

Skvělý dárek pod stromeček – audiokniha Zpráva z Hádu

Třípól doporučuje audioknihu Zpráva z Hádu, autorky Edity Dufkové, členky redakční rady! Jednou z rubrik našeho časopisu je Sci-fi, neboť dobré sci-fi příběhy vždy čerpají z vědy ...

MAGIC: Laserová značka s pomocí AI osvětluje původ rakoviny

Výzkumníci EMBL, Evropské mikrobiální laboratoře, vyvinuli nový nástroj založený na umělé inteligenci, který prostřednictvím molekulárních laserových značek ...

Pětidenní cesta pro nejdelší a nejširší komponentu ITER

Rychlostí chůze trvá dosažení lokality ITER z Berre-l’Étang, vzdáleného 70 kilometrů, přibližně 16 hodin. Pokud ale plánujete cestovat pouze mezi 22:30 a časnými ranními hodinami následujícího ...

Kazachstán plánuje výstavbu jaderné elektrárny v lokalitě Balchaš

Kazachstán provozoval 27 let jaderný reaktor BN-350 (první rychlý reaktor světa, chlazený sodíkem) ve městě Ševčenko (za doby Sovětského Svazu), dnes Aktau na břehu Kaspického moře.

Nejnovější video

Stellarátory - budoucnost energetiky?

Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.

close
detail