Astronomie

Článků v rubrice: 109

Neutronů celá hvězda

S částicemi je to těžké. Dnešní standardní model jich zahrnuje již několik desítek, které podle téhož modelu lze sestavit z pouhých dvanácti opravdu elementárních částic: šesti leptonů, šesti kvarků. K elementárním částicím lze přiřadit i několik částic zprostředkujících interakce. Tento soubor částic dnes považujeme za dále nedělitelný.

Fotogalerie (1)
Výtvarná vize neutronové hvězdy (Zdroj Shutterstock)

Mnohé z těchto částic jsou nestabilní, přesněji řečeno těch nestabilních je drtivá většina – znamená to, že se částice obvykle dříve či později rozpadnou na částice jiné. Ač se to zdá divné, tak i jedna z prvních objevených elementárních částic – neutron – podléhá rozpadu na jiné částice, pokud není vázán v jádře atomu.
Poločas tohoto rozpadu je asi 15 minut. Přesto lze ve vesmíru najít objekty, v nichž jsou volné neutrony a jsou stabilní.
Objekty, o nichž se budeme v následujících řádcích bavit, dostaly podle svého složení také název – říká se jim neutronové hvězdy. Způsob jejich vzniku je vcelku prozaický – jde o původ-ně dosti hmotné hvězdy (které svou hmotností asi desetkrát převyšují hmotnost Slunce), jež v závěru svého bouřlivého života prohrály celoživotní souboj s gravitací a podlehly rychlému smršťování. Celý děj je energeticky nesmírně zajímavý, nazýváme jej supernovou II. druhu. Původní hvězdné jádro přijde o své jaderné palivo a tak již nemůže tlakem záření vzdorovat vlastní gravitaci. Hvězda se velmi rychle smrští. Většina potenciální energie původní hvězdy je velmi rychle rozptýlena do prostoru prostřednictvím neutrin, asi setina energie je odnesena expandujícími vnějšími vrstvami původní atmosféry rychlostí kolem 104 m.s-1. A tak z původně zářivé hvězdy zůstane rychle se rozpínající obálka a velmi husté jádro.
Atomy jsou schopny se do jisté míry bránit smršťování elektromagnetickým odpuzováním. První bariérou, bránící úplnému kolapsu, jsou elektronové obaly, v nichž se koncentruje záporný náboj. Ty však narůstající tlak nevydrží, elektronové obaly se zbortí a dojde k elektronové degeneraci – elektrony se z atomů osamostatní. Zůstávají tedy protony a neutrony. Protony si ale udržují svůj pozitivní elektrický náboj a nadále se odpuzují. Hvězdy o hmotnostech mezi 2 a 10 hmotami Slunce zde vývoj končí - tomuto stádiu se říká bílý trpaslík. U hvězd hmotnějších vývoj pokračuje.
Jediný způsob, jak povolit další smršťování, je zbavit se náboje protonů a přeměnit je na neutrony. Ty jsou nadále neutrální, takže již nemohou bránit kompresi elektromagnetickým působením.
Výsledkem je těleso o poloměru kolem
10 km s hustotou převyšující 1017 kg.m-3. Jeden centimetr krychlový (což přibližně odpovídá obsahu kávové lžičky) by tedy vážil přibližně sto milionů tun (což odpovídá hmotnosti 60 kilometrů dlouhého vlaku sestaveného ze samých soupravových lokomotiv). Výpočty ukazují, že gravitační zrychlení na povrchu neutronové hvězdy je 1011 krát větší, než na povrchu Země. Řez modelem takové hvězdy připomíná spíše velmi exotickou planetu. Má několik centrimetrů tlustou atmosféru, pod níž leží asi 100–200 metrová kůra složená z jaderné mřížky, ve které se prohánějí delokalizované elektrony. Dále do nitra je vnitřní kůra, jež je tvořena supratekutou neutronovou kapalinou, jejíž mocnost je asi 5 km. Zbytek přestavuje jádro neutronové hvězdy. Ve vnějším jádře jsou neutrony a zbytky protonů, obojí v supratekutém stavu. Tlak ve vnitřním jádře by mohl dosahovat až takových hodnot, že by mohlo dojít k rozbití nukleonů na kvarky, které by se zde vyskytovaly volně společně s dalšími částicemi – piony. Takový je současný teoreticky vypracovaný model, který velmi dobře odpovídá pozorovanému chování.
V důsledku svého vývoje jsou neutronové hvězdy nositelkami extrémních magnetických polí s osou skloněnou vůči ose rotace. Tento efekt se projevuje velmi intenzivním a úzce směrovaným rádiovým zářením. Protože se zachovává moment hybnosti původní hvězdy, rotace neutronových hvězd je typicky velmi rychlá (až 1000 otáček za sekundu). Proto byly neutronové hvězdy na konci šedesátých let právem ztotožněny s periodickými zdroji rádiového záření – pulsary.
Zdá se, že neutronová hvězda je velmi zvláštní těleso, jež naplnilo snad i ty nejdivočejší představy astrofyziků. Přitom však o jejich existenci dnes již skoro nikdo nepochybuje a zdá se, že by naše představa o neutronových hvězdách mohla být i správná.

Michal Švanda
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Seminář Chemie na ČVUT – výuka i špičková věda

Nové léky využitelné v boji s rakovinou, přepracování použitého jaderného paliva, vytvoření pevnějších stavebních materiálů či likvidace kůrovce elektrickým proudem – to jsou jen některé z vědeckých úkolů z oblasti chemie, na kterých pracují vědci Českého vysokého učení technického v Praze (ČVUT).

Energetika by měla respektovat fyzikální zákony, ne politická rozhodnutí

Německo ročně spotřebuje 2500 terawatthodin energie. Ve větrných a solárních elektrárnách ale vyrobí za rok jen 180 TWh, což pokrývá sotva sedm procent spotřeby. Mezi těmito dvěma čísly je obrovská propast. Německo, díky politickým rozhodnutím posledních let, čelí vážnému problému.

Jak jste na tom s informační gramotností?

Jak se studenti druhého stupně základních škol orientují ve světě technologií, které nás obklopují? Jak zvládají aplikovanou matematiku? To ukáže jubilejní 10. ročník informační soutěže IT-SLOT, které se pravidelně účastní tisíce žáků 8. a 9. tříd základních škol z celé České republiky.

Cyklické změny teploty na Zemi

Paleoklimatologové hledají stopy vývoje teplot na Zemi v horninách a fosíliích. Dlouhodobé ochlazování začalo asi před 50 miliony lety, kdy byla průměrná globální teplota 14 °C. Tenkrát ještě nebyla na Zemi trvalá ledová pokrývka a hladina mořské vody byla o více než 70 m vyšší než dnes.

Záhadný lidský mikrobiom

Nedávný výzkum ukazuje, že naše tělo je domovem mikrobů, se kterými se věda předtím nesetkávala. Možná, že se kvůli nim bude i přepisovat strom života. Navíc může mít tato mikrobiální „temná hmota“ i vliv na zdraví.

Nejnovější video

Bez jaderné energie se ve vesmíru daleko nedostaneme

Krátké výstižné video z dílny Mezinárodní agentury pro atomovou energii ve Vídni ukazuje využití jaderné energie a jaderných technologií při výzkumu vesmíru. Ne každý ví, že jádro pohání vesmírné sondy už po desetiletí. Zopakujme si to. (Film je v angličtině.)

close
detail