Společně můžeme pokračovat mnohem rychleji, říkají fúzaři
Mé poslední dny strávené v akademickém ústavu se už počítaly na prstech jedné ruky. Nicméně se mi podařilo vydat knížku Soukromý kapitál ve výzkumu termojaderné fúze.
Bez uhlíku se neobejdeme – tvoří podstatnou část celé živé přírody i nás samotných. Nyní by se mohl stát naším ještě lepším pomocníkem. Učíme se totiž uhlík přetvářet na nanotrubičky, nanodestičky, nanokuličky a nanopásky a odhalujeme nové a nové možnosti jeho uplatnění.
Podle redaktora časopisu New Scientist, Michaela Brookse, objevili a vyrobili grafen v podstatě tak, že si hráli s lepicí páskou a tuhou z tužky. Novoselov potvrdil, že velmi dlouho nepoužívali žádnou technologii, jen několik kusů grafitu pokrytého stříbrnou barvou a snažili se získat výsledky, které by mohly naznačit, že by grafit mohl být použit jako tranzistor a měl i jiné užitečné vlastnosti. Tato práce podle něj skutečně připomínala spíše hru.
Grafen velmi dobře vede elektřinu a teplo, a proto je nadějným materiálem pro elektronické součástky, které se neustále zmenšují. Vědecké týmy ve světě pracují na metodách jeho výroby; vrstvy grafenu získané psaním grafitových tužek jsou ještě příliš tlusté. Např. Klaus Müller, ředitel Ústavu Maxe Plancka pro výzkum polymerů, patentoval řadu metod, včetně pyrolýzy. Ta spočívá v zahřívání prekursových molekul na skleněném podkladu, které již obsahují malé grafenové disky a také větve uhlíkových řetězců. Díky tepelnému zpracování můžeme získat průhledný grafenový film o tloušťce menší než 10 nanometrů.
Grafenové filmy nabízejí levnou alternativu k indium‑cínovému oxidu, který slouží jako průhledná elektroda pro sluneční články. I když je tento oxid průhledný a je dobrý vodič, je příliš drahý pro vysokou cenu india. Průhledné grafenové elektrody mohou také zvýšit účinnost fotovoltaických článků. Na rozdíl od indium‑cínového oxidu jsou grafenové elektrody průhledné i pro určitou část infračerveného světla, které tvoří až polovinu slunečního záření dopadajícího na Zemi. Grafenové elektrody se již osvědčily v prvních FV článcích vyrobených v Mainzu.
Dnes se nanotrubičky již vyrábějí v masovém měřítku, jde tedy o nadějnou cestu k hromadné výrobě grafenových nanopásků. Společnost Mitsubishi již např. vyrábí nanotrubičky v tunových množstvích.
Počítačové simulace, uskutečněné výzkumníky z Nankai University v Tianjin pod vedením Hui‑Tian Wanga, ukázaly, že stlačený materiál by mohl být přinejmenším zčásti tvořen BCC‑uhlíkem, sestaveným z prstenců čtyř atomů uhlíku. BCC‑uhlík má atributy jak diamantu, který má kubickou strukturu, tak grafitu, který je složen z volně spojených pásů atomů uhlíku v šestihranné mřížce. U BCC‑uhlíku jsou vrstvy uhlíkových prstenců spojeny velmi silnými vertikálními vazbami.
Výzkumníci modelovali různé krystalické struktury, které by mohly vzniknout při stlačení grafitu, a zjistili, že BCC‑uhlík k tomu potřebuje nejméně energie. To zvyšuje vyhlídky na výrobu neobvykle tvrdých materiálů bez extrémního zahřívání. Většina jiných materiálů, o kterých se domníváme, že jsou tvrdší než diamant, vyžaduje k výrobě jak vysokou teplotu, tak vysoký tlak.
Zájem o grafan má však málo společného s jeho elektrickými vlastnostmi, protože se výzkum soustřeďuje hlavně na to, jak ho obalit jinými novými molekulami. Změny, které vyvolá přidání atomů vodíku, nejsou ničím ve srovnání s tím, co by s grafenem mohlo učinit přidávání jiných prvků. Nové materiály na bázi chemicky modifikovaného grafenu by mohly být ještě stabilnější, spolehlivější a užitečnější než samotný grafan. Do hry se postupně dostanou i magnetické, supravodivé nebo mechanické vlastnosti. To vše však vědu teprve čeká.
Prameny:
Michael Brooks: It´s super carbon. New Scientist, 2009, č. 2736, s. 49‑51
Max Planck Research, special, 2009, s. 31
Michael Brooks: The fun way to win a Nobel prize. New Scientist, 2010, č. 2787, s. 32‑33
New Scientist, 2010, č. 2782, s. 33
How a softy turns hard under pressure. New Scientist, 2010, č. 2785, s. 12
Mé poslední dny strávené v akademickém ústavu se už počítaly na prstech jedné ruky. Nicméně se mi podařilo vydat knížku Soukromý kapitál ve výzkumu termojaderné fúze.
Kultivované maso je maso vypěstované přímo z živočišných buněk, bez nutnosti porážky zvířat. V dnešní době už nejde o sci-fi.
Mladé technické mozky ze středních škol z Česka a Slovenska se na konci listopadu utkaly v 8. ročníku AT&T HACKATHONu Junior v Brně. Dvoudenní maraton plný technologií opanovali ...
V noci 19. dubna 1787 astronom William Herschel zaznamenal z neosvětleného nového měsíce hodinu trvající světlo, jasné jako mlhovina v Orionu. Co to viděl? Pravděpodobně byl svědkem „přechodového ...
Oblast jaderné fúze se rychle vyvíjí. Fúze, která se dříve omezovala na experimentální výzkum, se nyní stává strategickou národní prioritou pro výzkum a vývoj.
Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.