Data z mizejícího ledovce
Bolívijský ledovec Huayna Potosí se každým rokem zmenšuje a ustupuje do svahu. Ve výšce 5 100 metrů nad mořem je vzduch kolem něho řídký.
Odpověď na tuto otázku se zdá být na první pohled jednoduchá. Uranové zásoby jsou dobře zmapovány a stačí tedy vydělit množství uranu jeho roční spotřebou. Jenže tak jednoduché to bohužel není.
Uran se získává z hornin - uranových rud, kde je zastoupen pouze v malém procentu. Nejlepší rudy obsahovaly až 20 % uranu. Dnes ale těžíme i rudy obsahující pouze 0,01 % uranu, a toto číslo se nejspíše bude dále snižovat. Kromě uranových ložisek je však uran zastoupen prakticky i ve všech horninách, které se na Zemi nacházejí, a to v průměrné koncentraci asi 3 ppm (= parts per milion, tedy pouhých 0,0003 %). Našli byste ho pod svým obydlím, v nitru našich hor i při vaší dovolené u moře - obrovské zásoby uranu jsou ukryté i v mořské vodě. Jeho koncentrace je ale, bohužel, ve většině těchto hornin a v dalších zdrojích velmi nízká. V žule je to asi 4-5 ppm, v mořské vodě tvoří uran dokonce pouhá 0,003 ppm! I přes tak malé číslo se odhaduje, že zásoby uranu v mořích a oceánech jsou asi 4 miliardy tun! Pokusně se z mořské vody podařilo již získat více než 1 kg uranu. Mezinárodní agentura pro atomovou energii (MAAE) však udává zásoby skoro tisíckrát menší, 5,5 milionů tun. Jak je to možné? Je to totiž odhad jen těch zásob, z nichž by se dal vytěžit kilogram uranu za méně než 130 USD. Navíc se jedná jen o ložiska již zmapovaná, kde šlo tuto cenu stanovit. Celkové zásoby v této cenové kategorii těžby se odhadují asi na 22 Mt.
Jinou otázkou je, zda bude výhodné využívat uran v jaderných elektrárnách. To záleží na ostatních „konkurenčních“ technologiích. Nebude v budoucnu výhodnější spalovat v jaderných elektrárnách thorium (kterého je na zemi asi třikrát více než uranu, a které lze využívat již ve stávajících reaktorech) nebo ve fúzních reaktorech deuterium, tritium a lithium? Neobjevíme ještě nějaká další významná ložiska fosilních paliv? Nedojde k rapidnímu snížení nákladů a zvýšení účinnosti obnovitelných zdrojů? Nebo snad dojde k tomu, že budeme energii, ať přímo nebo nepřímo, dovážet z jiných planet, z vesmíru? Na tyto otázky v současnosti nedokáže nikdo z nás odpovědět. To ukáže až budoucnost sama…
Bolívijský ledovec Huayna Potosí se každým rokem zmenšuje a ustupuje do svahu. Ve výšce 5 100 metrů nad mořem je vzduch kolem něho řídký.
Transport sektorového modulu #7 vakuové nádoby do montážní jámy tokamaku ITER ve čtvrtek 10. dubna 2025 představoval ne „dva v jednom“, nýbrž „mnoho věcí v jednom“.
Mezinárodní agentura pro atomovou energii ve Vídni předpovídá, že do roku 2050 se instalovaná kapacita jaderných reaktorů na světě zdvojnásobí – z 371 GW(e) v roce 2022 na 890 GW(e) do roku 2050.
Droboučký živočich, želvuška (tardigrada) může přežít nehostinný chlad i smrtící ionizující záření ve vesmíru. Všudypřítomná mikroskopická zvířátka, ...
Můžeme zastavit hackery, kteří loví vše od vojenských tajemství po bankovní informace? Až se kvantové počítače stanou samozřejmostí, současné kryptografické systémy zastarají.
Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.