Jaderná fyzika a energetika

Článků v rubrice: 595

Světová jaderná energetika na přelomu 2024/2025

V provozu je 417 jaderných  energetických reaktorů s celkovým instalovaným výkonem 375 320 MWe ve 31 zemích světa.

Ve výstavbě je 63 reaktorů, které  po zprovoznění přinesou  66 100 MWe  instalovaného výkonu.

Pozastaveno je 23 reaktorů (většina v Japonsku, které vrací do provozu reaktory uzavřené po Fukušimě jen pozvolna a postupně) s instalovaným výkonem 19 687 MWe.

Restartovány po dočasném odpojení byly naopak 2 reaktory:

ONAGAWA-2, Japonsko, typ BWR, 796 MWe

SHIMANE-2, Japonsko, typ BWR, 789 MWe

Trvale odstavené vloni byly:

KURSK-2, typ LWGR, 925 MWe, Rusko

MAANSHAN-1, typ PWR, 936 MWe, Taiwan

Byla zahájena výstavba 8 nových reaktorů, všechny typu PWR:

EL DABAA-4, 1 100 MWe, Egypt

LENINGRAD 2-3, 1 150 MWe, Rusko

LIANJIANG-2, 1 224 MWe, Čína

NINGDE-5, 1 200 MWe, Čína

SHIDAOWAN-1, 1 116 MWe, Čína

XUDAPU-2, 1 000 MWe, Čína

ZHANGZHOU-3, 1 129 MWe, Čína

ZHANGZHOU-4, 1 129 MWe, Čína

(Za zahájení výstavby se považuje tzv. „lití prvního betonu“ tedy zahájení betonáže základové desky.)

V loňském roce bylo dokončeno a připojeno k síti celkem pět nových bloků:

BARAKAH-4,  Spojené arabské emiráty, typ PWR, 1 310 MWe

FANGCHENGGANG-4,  Čína, typ PWR, 1 000 MWe

KAKRAPAR-4, Indie, typ PHWR (těžkovodní reaktor typu Candu), 630 MWe

VOGTLE-4, USA, typ PWR, 1 117 MWe

Flamanville-3, Francie, typ EPR (PWR), 1 600 MWe. (Byl připojen k síti v prosinci 2024 po 13 letech zpoždění, do plného provozu bude uveden v polovině roku 2025.)

Dohromady mají světové reaktory zkušenost už 20 127 reaktorroků provozu.

Pátý sektor vakuové komory ITER je z Evropy

Vakuovou komoru tokamaku ITER tvoří devět sektorů. Čtyři dodá Korea a pět Evropa. Korea již tři přivezla, ale všechny bohužel vadné. První je po třech letech opraven až tento podzim. Čtvrtý korejský sektor nyní putuje Indickým mořem do Francie. První sektor z Evropy má číslo 5. V Evropě se do složité série průmyslových kroků nutných k výrobě unikátních součástek zapojilo 150 lidí v Itálii a nejméně 15 společností a jejich týmů po celé Evropě. Sektor vakuové nádoby se skládá ze čtyř dílčích segmentů; pro sektor č. 5 byly dva ze čtyř segmentů vyrobeny společností Westinghouse, zatímco další dva vyrobila společnost Walter Tosto. Od počátečních řezacích činností až po konečný produkt vyžadovala výroba nejméně 20 000 hodin obrábění a 100 000 hodin svařování (k dokončení 150 km svarů).

Inspekce pro záruky nezneužití použitého paliva v úložištích

Země, které provozující jaderné reaktory, jsou zodpovědné za použité palivo z těchto reaktorů - za jeho ošetření, skladování, případně uložení a likvidaci. Pokud jej nenechají přepracovat na čerstvé palivo a prohlásí jej za odpad, musejí zajistit geologické kapacity pro vysoce radioaktivní odpad. Mezinárodně uznávaným přístupem je zajistit hlubinné úložiště (HÚ). Kanada, Finsko, Francie, Švédsko a Švýcarsko mají programy pro hlubinná úložiště pro použité palivo z energetických reaktorů nejpokročilejší. (Pro vysokoaktivní odpady z vojenského programu USA již mnoho let funguje hlubinné úložiště WIPP v Novém Mexiku. Česká republika je na počátku - teprve vybírá místo pro HÚ.)

Úspěšný start zkušebního provozu ve finském úložišti jaderných odpadů

První fáze zkušebního provozu v úložišti použitého jaderného paliva Onkalo byla úspěšně dokončena umístěním zkušebních kontejnerů, oznámila finská společnost Posiva zabývající se nakládáním s odpady. V úložišti se použité palivo uloží do skalního podloží v hloubce cca 430 metrů. Úložní systém se skládá z utěsněného železo-měděného kanystru, bentonitového nárazníku obklopujícího kanystr, tunelového zásypového materiálu z bobtnajícího jílu, těsnicích konstrukčních prvků tunelů a samotné horniny.

Rychlý reaktor BN-800 potvrzuje spolehlivý provoz paliva MOX

Tento sodíkem chlazený rychlý reaktor, 4. blok Bělojarské jaderné elektrárny, zaznamenal rok trvající spolehlivý a bezpečný provoz s téměř plnou vsázkou směsného oxidového uran-plutoniového paliva MOX. Bylo to poprvé na světě, kdy byl rychlý reaktor v provozu na téměř plném výkonu s palivem MOX, což prokazuje připravenost uzavřeného jaderného palivového cyklu v průmyslovém měřítku. Na rozdíl od palivových článků s obohaceným uranem, které se používají v současných lehkovodních reaktorech, obsahují palivové pelety MOX oxid plutonia, který je získán přepracováním použitého paliva z lehkovodních reaktorů typu VVER, a ochuzený oxid uranu, odpad po obohacování uranu.

Vývoj technologie rychlých reaktorů a recyklace paliva

Co kdyby vysokoaktivní jaderný odpad produkovaný jadernými elektrárnami mohl podnítit oběhové  hospodářství v energetickém sektoru? Ano, mohly by ho zajistit rychlé reaktory pracující v uzavřeném palivovém cyklu. Rychlé reaktory využívají k udržení řetězové štěpné reakce neutrony, které nejsou zpomalovány moderátorem (např. vodou v nejpoužívanějších reaktorech současnosti – tlakovodních a varných). Při provozu v plně uzavřeném palivovém cyklu, ve kterém se jaderné palivo recykluje a znovu používá, by mohly rychlé reaktory získat 60 až 70krát více energie ze stejného množství přírodního uranu než současné klasické reaktory, a tím výrazně snížit množství vysokoaktivního odpadu.

... 1 2 3 4 5 6 7 » 100 ...

Nejnovější články

Farmy s mořskými řasami pro ukládání uhlíku

Nový výzkum ukazuje, že farmy s mořskými řasami ukládají uhlík stejně efektivně jako přírodní pobřežní ekosystémy, což by mohlo být součástí řešení ...

Odsolování pomocí jaderné energie v arabském regionu

Nedostatek sladké vody je trvalým problémem po celém světě, zejména v arabském regionu, kde omezené přírodní vodní zdroje a rychlý růst populace kladou stále větší požadavek na dodávky.

Ať vám léto hraje do karet

Infocentra energetické společnosti ČEZ návštěvníkům o prázdninách kromě interaktivních prohlídek přinesou i soutěž o unikátní odměnu.

Ochrana technických zařízení a dat během výpadků elektřiny

Rozsáhlé výpadky elektřiny, které počátkem května 2025 zasáhly Pyrenejský poloostrov, poukázaly na zranitelnost naší energetické infrastruktury a zdůraznily potřebu ochránit ...

V Temelíně testují autonomní drony

V temelínské jaderné elektrárně zkoušejí energetici využití autonomních dronů pro inspekce technologií v obtížně přístupných prostorách.

Nejnovější video

Stellarátory - budoucnost energetiky?

Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.

close
detail