Jaderná fyzika a energetika

Článků v rubrice: 331

Jak se staví budova tokamaku ITER

Stavební týmy plní stavební smlouvy, zatímco nasmlouvaní dodavatelé organizace ITER začínají instalovat první komponenty. V prostoru budoucího reaktoru tokamaku ITER se staví ve třísměnném režimu - dvě plné pracovní směny ve dne a třetí směna v noci. Ta je věnovaná nastavování pohyblivého lešením a bednění při přípravě na úkoly následujícího dne. Evropská domácí agentura odpovědná za inženýrství a stavitelství usiluje o splnění důležitého termínu v kalendáři stavby ITER: březen 2020. Pro hlavní instalační činnosti bude zapotřebí mít hotovou cestu pro první pohyb jeřábu mezi Montážní halou (Assembly Hall) a Budovou tokamaku (Tokamak Building). Dnes tu pracuje více než 2 000 osob, ale v příštích měsících se tato oblast staveniště zaplní lidmi ještě více. Organizace ITER se nyní připravuje k podávání nabídek hlavních smluv týkajících se montážních a instalačních prací.

Fúze bude

Fúze bude za 500, spíše za 1 000 let,“ sdělila mi doktorka K. H. z Regionálního centra pokročilých materiálů a technologií při Přírodovědecké fakultě University Palackého v Olomouci. V současné době se paní doktorka zabývá ve Švédsku výrobou metanolu ze vzdušného oxidu uhličitého (viz recenzi knížky Charlese Graye „Zelené slunce" zde: https://www.3pol.cz/cz/rubriky/recenze/2181-charles-e-gray-zelene-slunce). Co vedlo paní doktorku k tak drsné prognóze? Obavy z konkurence? Odlehlost fúze od její odbornosti? Nebo naopak hluboké znalosti stavu výzkumu termojaderné fúze? Shodou okolností se nedávno objevily zajímavé úvahy profesora Scotta L. Montgomeryho na téma konkurenceschopnosti termojaderné fúze coby zdroje energie (https://theconversation.com/ why-nuclear-fusion-is-gaining-steam-again-93775). Dovolím si je volně interpretovat.

Průlom v oblasti jaderných baterií

Jae W. Kwon a jeho vědecký tým z University v Missuri vyvinul novou generaci baterií na bázi beta záření. Tato baterie může být potenciálně využitelná jak v kosmických aplikacích, tak třeba i v automobilech.

Až ITER zapálí první plazma

Termínem „první plazma“ se ve výzkumu termojaderného plazmatu nazývá okamžik, kdy se vyčerpá vakuová komora, fungují potřebné pomocné systémy (magnetická pole, nezbytné diagnostiky, napouštění pracovního plynu atd.) a zapálí se výboj. Bezesporu významný okamžik v historii experimentálního zařízení. Pražský tokamak COMPASS měl první plazma v listopadu 2008, a druhé „první“ plazma pro veřejnost v únoru 2009. Tokamak ITER měl mít první plazma v roce 2016, druhé „první“ v roce 2016 a třetí první plazma mělo být v roce 2025. Zatím se tak nestalo, zpoždění je značné, ale jednou ten okamžik nastane. Je potřeba se na něj připravit.

Bude spuštění fúze znamenat vyčerpání jejího paliva?

Jedním z paradoxů fúze, prakticky nevyčerpatelného zdroje energie budoucnosti, je skutečnost, že spoléhá na prvek, který v přírodě existuje jen velmi sporadicky. Tritium, jeden ze dvou vodíkových izotopů používaných v ITER a v budoucích fúzních jaderných reaktorech, je v přírodě přítomen jen ve stopovém množství.

Pistolové krevetky inspirují termojadernou fúzi

Zřejmě nejkurióznější řešení termojaderné fúze předvádí soukromá společnost First Light Fusion Ltd. s domovskou adresou ve Spojeném Království, kde se oddělila od ctihodné Oxford University. Technickým ředitelem je čerstvý doktor Nicholas Hawker, který se zabývá ději při kolapsu bublin. Domnívá se, že po kolapsu může hmota uvnitř kolabující bubliny dosáhnout parametrů, kdy se zapálí termojaderná fúze v inerciálním formátu. Dr. Hawker se pro dosažení kýženého výsledku obrátil do zvířecí říše, konkrétně k tzv. pistolovým krevetám (pistol shrimps), které jsou známy schopností generovat pomocí mimořádně velkého a zvláštně uspořádaného klepeta bublinu schopnou omráčit i většího živočicha, než jsou sami.

... 1 « 2 3 4 5 6 7 8 » 56 ...

Nejnovější články

Sto let od úmrtí ruského botanika, fyziologa, biochemika a zakladatele chromatografie

Za zakladatele chromatografie se všeobecně považuje ruský přírodovědec Michail Semjonovič Cvět, kterému se v roce 1903 podařilo rozdělit listové pigmenty. Je proto záhodno, abychom si právě letos po uplynutí 100 let od jeho smrti znovu připomněli osobnost ...

Nový druh magnetu

Sloučenina uranu a antimonu USb2 generuje magnetismus úplně jiným způsobem než dosud známé magnety. Vědci jej nazvali „singletový” magnetismus. Elektrony, záporně nabité elementární částice, vytvářejí své vlastní malé magnetické pole. Je to důsledek kvantové mechanické vlastnosti známé jako spin.

Biocev, mitochondrie a nádory

Výzkumné skupiny vědeckého centra BIOCEV se zaměřují na detailní poznání organismů na molekulární úrovni. Jejich výsledky směřují do aplikovaného výzkumu a vývoje nových léčebných postupů proti závažným zdravotním problémům.

S.A.W.E.R. může změnit poušť v úrodnou krajinu

Proměnit suchou a horkou poušť v zelenou krajinu zní v tuto chvíli jako sen nebo pohádka. V praxi by k takové proměně bylo třeba velké množství vody. Ale kde takové množství vody v poušti vzít? Pomocí Slunce ze vzduchu! I pouštní vzduch totiž v sobě obsahuje vodní páru.

Inerciální udržení – lasery a urychlovače

Fúzí při magnetickém udržení (tokamaky a stelarátory) jsme se zabývali podrobně již mnohokrát. Všimněme si udržení inerciálního, které s nepatrnou nepřesností můžeme zaměnit za laserovou fúzi. V roce 1963 sovětští vědci N. G. Basov a O. N.

Nejnovější video

Bez jaderné energie se ve vesmíru daleko nedostaneme

Krátké výstižné video z dílny Mezinárodní agentury pro atomovou energii ve Vídni ukazuje využití jaderné energie a jaderných technologií při výzkumu vesmíru. Ne každý ví, že jádro pohání vesmírné sondy už po desetiletí. Zopakujme si to. (Film je v angličtině.)

close
detail