Článků v rubrice: 3074

Století vynálezů v české energetice

Průmyslově založené české země přivítaly koncem 19. století elektřinu s velkým nadšením a začaly ji rychle využívat v osvětlování soukromých i veřejných prostor, v dopravě i ve výrobě. Češi nebyli jen pasívními příjemci překotného rozvoje energetiky, ale sami se na něm aktivně podíleli. Některé vynálezy či postupy se přitom staly vzorem i pro zbytek světa. Příkladem mohou být Kaplanova turbína, která se dnes používá ve vodních elektrárnách na celém světě, vývoj a výroba parních kotlů nebo zavádění hromadného dálkového ovládání (HDO). Mluvíme-li o umu českých rukou a hlav, musíme zdůraznit, že v počátcích rozvoje jaderné energetiky bylo jen 9 zemí na celém světě, které byly schopné ovládnout řetězovou štěpnou reakci a postavit a provozovat vlastní jadernou elektrárnu. Československo bylo jednou z nich!

Stoleté elektrárny u nás spolehlivě slouží

Šest energetických zdrojů funguje a dodává elektřinu už od začátku republiky. Jsou to tři vodní elektrárny, které pamatují vznik Československa v roce 1918: elektrárna Želina u Kadaně, Hučák v Hradci Králové a Čeňkova pila na Klatovsku. Dalších osm fungujících vodních elektráren pak pochází z období první republiky. Dlouhodobě ale fungují i uhelné zdroje. Nejstarším rodokmenem se pyšní Energocentrum Vítkovice, kde se elektřina vyráběla již v roce 1897. Před dvěma lety oslavila sto let lokalita Trmice u Ústí nad Labem, kde současná teplárna nahradila na stejném místě stojící původní elektrárnu z roku 1916. Od roku 1914 se elektřina vyrábí i v Poříčí u Trutnova.

Století elektřiny v Česku (Československu)

Při vzniku samostatné republiky v roce 1918 činila hrubá spotřeba na území Čech, Moravy a Slezska celkem 1 TWh. Nyní to je téměř 74 TWh. Za posledních sto let spotřeba elektřiny v Česku stoupala v průměru každý rok o 4,4 procenta, za sto let tedy 74krát. V Českých zemích se spotřebovalo za 100 let existence přes 3 350 TWh elektřiny, což je více než současná roční spotřeba všech zemí Evropské unie. Odhaduje se, že do roku 2050 využití elektřiny dál vzroste, a to až trojnásobně, především v oblasti dopravy, průmyslu a v budovách. Během posledních sto let stoupnul instalovaný výkon v českých zemích z přibližně 800 MW na dnešních 22 267 MW, výroba vzrostla dokonce 80krát. Počet obyvatel přitom zůstal na podobné úrovni. Za sto let se vybudovalo čtvrt milionu kilometrů elektrického vedení, maximální zatížení přenosové soustavy stouplo více než šest tisíckrát. Elektřina v současném Česku tvoří asi 20 % celkové spotřeby energií, její role ale bude do budoucna stoupat.

Jak bude vypadat podnikání budoucnosti?

Sterilní průmyslové prostory plné výkonných robotů či bezchybná produkce bez jediného zásahu člověka. To je jedna z vizí budoucnosti průmyslových firem v Česku, ke které by měl přispět především Průmysl 4.0. Odborníci o něm hovoří stále častěji, věnoval se mu bude také Mezinárodní strojírenský veletrh v Brně. Podívejme se, zda jsou inteligentní roboti, digitální dvojčata či virtuální realita zatím pouhá hudba budoucnosti, nebo už jsou to běžně používané nástroje, které změní práci ve firmách tak, jak ji známe dnes.

Fúze bude

Fúze bude za 500, spíše za 1 000 let,“ sdělila mi doktorka K. H. z Regionálního centra pokročilých materiálů a technologií při Přírodovědecké fakultě University Palackého v Olomouci. V současné době se paní doktorka zabývá ve Švédsku výrobou metanolu ze vzdušného oxidu uhličitého (viz recenzi knížky Charlese Graye „Zelené slunce" zde: https://www.3pol.cz/cz/rubriky/recenze/2181-charles-e-gray-zelene-slunce). Co vedlo paní doktorku k tak drsné prognóze? Obavy z konkurence? Odlehlost fúze od její odbornosti? Nebo naopak hluboké znalosti stavu výzkumu termojaderné fúze? Shodou okolností se nedávno objevily zajímavé úvahy profesora Scotta L. Montgomeryho na téma konkurenceschopnosti termojaderné fúze coby zdroje energie (https://theconversation.com/ why-nuclear-fusion-is-gaining-steam-again-93775). Dovolím si je volně interpretovat.

Průlom v oblasti jaderných baterií

Jae W. Kwon a jeho vědecký tým z University v Missuri vyvinul novou generaci baterií na bázi beta záření. Tato baterie může být potenciálně využitelná jak v kosmických aplikacích, tak třeba i v automobilech.

... 1 « 160 161 162 163 164 165 166 » 513 ...

Nejnovější články

Jak může ionizující záření pomoci při recyklování plastů

„Světový závazek skoncovat se znečištěním plasty je jasný a nepopiratelný,“ řekla Inger Andersen, výkonná ředitelka Programu OSN pro životní prostředí (UNEP), když se v ...

Teenageři staví drony pro záchranáře a přemýšlejí, jak zamezit plýtvání

Středoškoláci nevnímají umělou inteligenci jako hrozbu, ale jako příležitost dělat věci jinak a lépe. Projekty na téma AI: Cesta k udržitelnější budoucnosti? představila desítka finalistů programu Samsung Solve for Tomorrow.

40 let od spuštění Jaderné elektrárny Dukovany

Přesně 3. května uplynulo 40 let od zahájení zkušebního provozu první jaderné elektrárny na území České republiky. Jsou to Dukovany, které leží u obce stejného ...

10 nejzajímavějších projektů malých modulárních reaktorů roku 2025

Celosvětový zájem o malé modulární reaktory (Small Modular Reactors, SMR) stále roste. Významně jej urychlil rychlý vstup datových center na trh (v souvislosti s rozvojem umělé inteligence).

Reaktory chlazené roztavenými solemi

V krátkodobém horizontu se bude ve světě stavět většina nových reaktorů jako lehkovodní reaktory, tedy stejný typ, který ve 20. století vedl k počátečnímu boomu zavádění jaderné energie.

Nejnovější video

Stellarátory - budoucnost energetiky?

Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.

close
detail