Jaderná fyzika a energetika

Článků v rubrice: 551

Elektrony na útěku

Slyšeli jste o runaway elektronech (REs)? Neslyšeli? Ani o ubíhajících elektronech? Není divu, v běžném životě se s nimi nesetkáte. Možná v horních vrstvách atmosféry v bouřkově aktivních oblastech, kde lze pozorovat krátké záblesky gama záření TGF (Terestrial Gamma-ray Flashes); ty prý pocházejí právě od ubíhajících elektronů, které mají relativistické rychlosti. Vznikají, když dostatečně poklesne počet srážek elektronů s atmosférou díky rostoucí rychlosti částic. Elektrony nebrzděné srážkami dosahují takřka nadpřirozených rychlostí. Stačí k tomu malé, ale stálé elektrické pole.

Staveniště ITER letos v létě

Plocha staveniště nejdražšího vědecko-technického projektu na zemi o rozloze 42 hektarů hýří činorodostí. A bylo tomu tak po celé léto. Šest budov je v různém stadiu výstavby, v různém stadiu přípravných prací jsou tři další budovy. V červnu se na stavbě pohybovalo 1 500 lidí. Šest let po začátku stavby v Saint-Paul-lez-Durance, Francie. Na obzoru se rýsuje první termojaderný reaktor v historii lidstva!

Český podíl na prvním fúzním reaktoru

Znáte slogan „Nejsme čipsy, jsme brambůrky“? Petr Hobža ze Strakonic, který začínal se šesti kilogramy brambor upravovanými na teflonové pánvi ve stánku na koupališti, nyní denně na výrobu brambůrků (ne čipsů) spotřebuje 40 tun brambor. Zpracovává je na unikátní lince vlastní konstrukce složené z komponent jiných amerických či japonských linek. Česká republika se zkrátka umí zviditelňovat důvtipem českých mozků a umem českých rukou. A zdaleka ne jen v souvislosti s brambůrky, tvarůžky a pivem: um a vyspělost společnosti se měří účastí na mezinárodních vědecko-technických projektech. Několik českých strojírenských a technologických firem se podílí i na největším pozemském energetickém projektu pro budoucnost – na stavbě mezinárodního termojaderného experimentálního reaktoru ITER v jižní Francii v Cadarache.

Měření fúzního výkonu počítáním neutronů

Obrovský fúzní reaktor ITER, který se právě staví v jižní Francii, má být prvním fúzním zařízením na světě, které dosáhne pozitivní energetický výtěžek. To znamená, že nám vydá více energie, než kolik jí musíme do uskutečnění fúzní reakce vložit. Nebude však ještě elektrárnou, ale stále jen experimentálním zařízením. Jak tedy poznáme, že fúzní výkon je dostatečný? Pomohou nám malé štěpné komory, či spíše komůrky o rozměru tužky, které budou umístěné blízko plazmatu, aby „počítaly“ neutrony – produkty fúzní reakce. Mohou se zdát titěrně malé v porovnání s 23 500 tunovým tokamakem ITER,  hrají však veledůležitou roli. Měřením neutronového toku z plazmatu budou tato vysoce přesná zařízení pomáhat vědcům sledovat výstupní fúzní výkon.

Japonský radioaktivní odpad

Od zničení jaderné elektrárny Fukušima vlnou cunami uplynulo 5 let. A dalších odhadem 50 let potrvá, než se okolní území vyčistí. Jedním z největších problémů se jeví množství půdy skryté z povrchu některých území zasažených radioaktivní kontaminací. Na hromadách se kupí pytle s půdou a listím. Vláda uvedla, že v prefektuře Fukušima je takto uskladněno více než 9 milionů pytlů. Některé z nich se přesunou do nejbližší zóny k elektrárně, kam je zakázán vstup. Japonsko vymýšlí složitý postup likvidace a uložení podobného nízkoaktivního odpadu – největším problémem je právě množství. Polovina z odhadovaných 28 milionů metrů krychlových materiálu přitom není vůbec kontaminována, ale je to spíše „vedlejší produkt“ nápravného procesu. Plán na třídění a postavení dočasných úložišť již je hotový.

Jak to bylo s fúzí – část osmá

Kulový (nebo kulatý?) tokamak je už dlouho v hledáčku fúzních fyziků, ať už v Culham Science Centre ve Spojeném království, nebo Princeton Plasma Physics Laboratory ve Spojených státech. Britské tokamaky Start, modernizovaný MAST, nebo americký NSTX jsou dnes pojmy a výzkumy na nich pokračují přinejmenším stejně intenzivně, jako na klasických tokamacích. Kulové tokamaky zvětšily poměr malého a velkého poloměru toroidální vakuové komory na úkor centrálního solenoidu (primárního vinutí tokamakového transformátoru) tak, že průřez jejich vakuové komory připomíná přepůlené jablíčko bez jaderníku. Novou kapitolu kulových tokamaků se pokouší psát druhá generace vysokoteplotních supravodičů, která dokáže pracovat s magnetickými poli více než dvakrát silnějšími, než jaká fungují u současných standardních tokamaků. Výkon plazmatu roste se čtvrtou mocninou intenzity magnetického pole!

... 1 « 54 55 56 57 58 59 60 » 92 ...

Nejnovější články

Nové jaderné projekty pro Evropu

Nejen Česká republika, která v právě probíhajícím výběrovém řízení poptává 4 nové jaderné bloky, ale i další evropské země plánují rozvoj jaderné energetiky.

Solární rok 2023

Vývoj solární energetiky v roce 2023 v Česku opět výrazně přidal na rychlosti. Podle dat Solární asociace se postavil téměř 1 gigawatt nových fotovoltaických elektráren (FVE), celkem jich vzniklo skoro 83 000.

Přehled současného stavu SMR ve světě

O  SMR, malých modulárních reaktorech, jsme již psali několikrát. Ze souhrnného materiálu NEA (Jaderné energetické agentury OECD) jsme pro čtenáře Třípólu vybrali přehledy jednotlivých projektů (stav v r.

Co s vysloužilými fotovoltaickými panely, turbínami a bateriemi?

Růst výroby elektřiny z obnovitelných zdrojů energie (OZE) a růst počtu elektrických vozidel (EV) je klíčem ke globálnímu snížení závislosti na fosilních palivech, snížení ...

Co nám vodní houby mohou říci o vývoji mozku

Když čtete tyto řádky, pracuje vysoce sofistikovaný biologický stroj – váš mozek. Lidský mozek se skládá z přibližně 86 miliard neuronů a řídí nejen tělesné funkce od vidění ...

Nejnovější video

Jak funguje PCR test na coronavirus

Krásně a jednoduše vysvětleno se srozumitelnými animacemi. V angličtině.

close
detail